Abbreviations and Notations

- LSB: Least Significant Bit (right-most)
- MSB: Most Significant Bit (left-most)
- a,b(lower case): a single bit
- A, B (upper case): set of bits, e.g. $\mathrm{A}=$
\{a_i\}, $i=[0, N-1]$

Bit-wise operators

8 Bool/Bit analogy (helps to remember effect of operators): 1 is TRUE, 0 is FALSE

A While Bool operators ($\& \&,| |,!$ - no equivalence for \sim) apply to simple TRUE/FALSE operands, bit-wise operators apply to all bits of their operands (see Example block)

- \& (AND): both operands have 1s
- | (OR): either or both operands have 1 s
- ^ (XOR, aka exclusive OR): either but not both operands have 1s
- ~(NOT, aka complement): 1 becomes 0; 0 becomes 1
- << (left-shift): a << n shifts all bits in a to the left by n positions and pads with 0 s to the right.
- >> (right-shift): a >> n shifts all bits in a to the right by n positions and pads with 0 s to the left

If a is an int, $\mathrm{a} \ll \mathrm{n}$ and $\mathrm{a} \gg \mathrm{n}$ are equivalent to multiplying an dividing respectively by $2^{\text {n }}$

By [deleted]

cheatography.com/deleted26304/

1-Bit Bit-wise Operators Summary

\mathbf{X}	\mathbf{Y}	$\mathbf{X \& Y}$	$\mathbf{X} \mid \mathbf{Y}$	$\mathbf{x} \mathbf{Y}$	$\sim(\mathbf{X})$
0	0	0	0	0	1
0	1	0	1	1	1
1	0	0	1	1	0
1	1	1	1	0	0

Source: https://www.hackerearth.com/no-tes/bit-manipulation/

Examples (using $A=1010 ; B=1100$)

- $\&: A \& B=1000$
- $|: A| B=1110$
- $\wedge: A \wedge B=0110$
- ~: ~A $=11110101$ (the number of 1's depends on the type of A)
- <<: A << $2=0000$

Usage

- Bit accessing: $1 \ll 5=100000$ TOREVIEW

Bit-wise Operators as Operations of Sets of Bits

- Using ALL_BIT = 32/64 1 s on a 32/64bit machines
- Union: A|B
- Intersection: A\&B
- Subtraction: A\& (~B)
- Negation: ALL_BITS^A

Not published yet.
Last updated 6th July, 2016.
Page 1 of 1 .

Two's Complement (TsC)

- Most common number system to encode pos.a dn neg. numbers in a binary number representation of negative integers. One's complement is the alternative but seeimingly never used.
- In TsC, MSB used for int sign (- for 1, + for 0)
- Meaning 1: Mathematical operation on binary numbers (the additive inverse op.)
- Meaning 2: Binary signed number representation based on above mathematical operation, s.t. neg. numbers are represented byt hte TsC of the abs. value

```
- N-bit TsC range: [-2 N-1, +(2 (2-1}-1)
```

- Conversion from TsC representation
- Conversion to TsC representation

Source: https://en.wikipedia.org/wiki/Two\'s_complement

