
Object Oriented Rules Cheat Sheet
by [deleted] via cheatography.com/24206/cs/5557/

SOLID

Single Respon ​​si ​b ​ility Principle

A class changes for only one reason

Op ​en/ ​Closed Principle

A class should be open for extension,
closed for editing

Li ​skov's Substi ​​tution Principle

Derived types should cleanly and easily
replace base types

In ​terface Segreg ​​ation Principle

Favor multiple single ​​-p ​u ​rpose interfaces
over composite

De ​pen ​dency Inversion Principle

Concrete classes depend on abstra ​​ct ​‐
ions, not vice-versa

SOLID principles

Common Refact ​​orings

Encaps ​​ulate Field

Generalize Type

Type-C ​​he ​cking ⇒ State/ ​​St ​r ​ategy

Condit ​​ional ⇒ Polymo ​​rphism

Extract Method

Extract Class

Move/R ​​ename Method or Field

Move to Superc ​​la ​s ​s ​/S ​​ubclass

More Refact ​orings

 

Basic OO Terms

Abst ​ra ​​ction

The process of separating ideas from
specific instances of those ideas at work.

Poly ​mo ​​rph ​ism

The provision of a single interface to
entities of different types. Subtyping.

Inhe ​ri ​​tance

When an object or class is based on
another object or class, using the same
implem ​​en ​t ​a ​tion; it is a mechanism for
code reuse. The relati ​​on ​ships of objects
or classes through inheri ​​tance give rise
to a hierarchy.

Enca ​ps ​​ula ​tion

Enclosing objects in a common interface
in a way that makes them interc ​​ha ​n ​g ​‐
eable, and guards their states from
invalid changes.

Other Principles

DRY - Don’t repeat yourself

Duplic ​​ation should be abstracted

Holl ​ywood Princi ​ple

" ​​Don't call us, we'll call you"

YAGNI - You Ain't Gonna Need It

Only code what you need now

KISS - Keep it simple, stupid!

Favor clarity over cleverness

Law of Demeter

Only talk to related classes

 

Other Principles (cont)

Conv ​ention Over Config ​​ur ​ation

Defaults cover 90% of uses

Enca ​ps ​​ula ​tion

What happens in Vegas...

Design By Contract

And then write tests

Low Coupling

Minimize the depend ​encies

Common Closure Princi ​ple

Classes that change together, stay
together

Avoid Premature Optimi ​zat ​ion

Don’t even think about optimi ​zation
unless your code is working

Sepa ​ration of Concerns

Different functi ​ona ​lities are distinctly
managed

Embrace Change

Expect and welcome any changes

Basic Principles

Encaps ​​ulate what varies

Code to an interface rather than to an
implem ​​en ​t ​ation

Each class in your applic ​​ation should have
only one reason to change

Classes are about behavior and functi ​​on ​a ​‐
lity

By [deleted]
cheatography.com/deleted-
24206/

 

Published 28th October, 2015.
Last updated 28th May, 2017.
Page 1 of 2.

 

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/deleted-24206/
http://www.cheatography.com/deleted-24206/cheat-sheets/object-oriented-rules
http://www.blackwasp.co.uk/SRP.aspx
http://www.blackwasp.co.uk/OCP.aspx
http://www.blackwasp.co.uk/LSP.aspx
http://www.blackwasp.co.uk/ISP.aspx
http://www.blackwasp.co.uk/DIP.aspx
http://www.blackwasp.co.uk/SOLID.aspx
http://refactoring.com/catalog/
http://www.cheatography.com/deleted-24206/
https://readable.com


Object Oriented Rules Cheat Sheet
by [deleted] via cheatography.com/24206/cs/5557/

Design Patterns

Abstract Factory Creational

Builder Creational

Factory Method Creational

Prototype Creational

Singleton Creational

Adapter Structural

Bridge Structural

Composite Structural

Decorator Structural

Facade Structural

Flyweight Structural

Proxy Structural

Chain of Respon ​sib ​ility Behavioral

Command Behavioral

Interp ​reter Behavioral

Iterator Behavioral

Mediator Behavioral

Memento Behavioral

Observer Behavioral

State Behavioral

Strategy Behavioral

Template Method Behavioral

Visitor Behavioral

 

Favor the following over inheri ​​tance

Dele ​gat ​ion

When you hand over the respon ​​si ​b ​ility
for a particular task to another class or
method.

Comp ​os ​​ition

Use behavior from a family of other
classes, and change that behavior at
runtime.

Aggr ​eg ​​ation

When one class is used as part of
another class, but still exists outside of
that other class.

Access Modifiers

Priv ​ate Only inside the same class
instance

Prot ​‐
ected

Inside same or derived class
instances

Public All other classes linkin ​​g/ ​r ​e ​fe ​​‐
rencing the class

Inte ​rnal Only other classes in the same
assembly

Prot ​‐
ected
Internal

All classes in same assembly, or
derived classes in other
assembly

Static Accessible on the class itself
(can combine with other
accessors)

 

By [deleted]
cheatography.com/deleted-
24206/

 

Published 28th October, 2015.
Last updated 28th May, 2017.
Page 2 of 2.

 

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/deleted-24206/
http://www.cheatography.com/deleted-24206/cheat-sheets/object-oriented-rules
http://www.blackwasp.co.uk/AbstractFactory.aspx
http://www.blackwasp.co.uk/Builder.aspx
http://www.blackwasp.co.uk/FactoryMethod.aspx
http://www.blackwasp.co.uk/Prototype.aspx
http://www.blackwasp.co.uk/Singleton.aspx
http://www.blackwasp.co.uk/Adapter.aspx
http://www.blackwasp.co.uk/Bridge.aspx
http://www.blackwasp.co.uk/Composite.aspx
http://www.blackwasp.co.uk/Decorator.aspx
http://www.blackwasp.co.uk/Facade.aspx
http://www.blackwasp.co.uk/Flyweight.aspx
http://www.blackwasp.co.uk/Proxy.aspx
http://www.blackwasp.co.uk/ChainOfResponsibility.aspx
http://www.blackwasp.co.uk/Command.aspx
http://www.blackwasp.co.uk/Interpreter.aspx
http://www.blackwasp.co.uk/Iterator.aspx
http://www.blackwasp.co.uk/Mediator.aspx
http://www.blackwasp.co.uk/Memento.aspx
http://www.blackwasp.co.uk/Observer.aspx
http://www.blackwasp.co.uk/State.aspx
http://www.blackwasp.co.uk/Strategy.aspx
http://www.blackwasp.co.uk/TemplateMethod.aspx
http://www.blackwasp.co.uk/Visitor.aspx
http://www.cheatography.com/deleted-24206/
https://readable.com

	Object Oriented Rules Cheat Sheet - Page 1
	SOLID
	Basic OO Terms
	Common Refact­­orings
	Other Principles
	Basic Principles

	Object Oriented Rules Cheat Sheet - Page 2
	Design Patterns
	Favor the following over inheri­­tance
	Access Modifiers


