\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{{[}deleted{]}} \pdfinfo{ /Title (qut-mxb100.pdf) /Creator (Cheatography) /Author ({[}deleted{]}) /Subject (QUT MXB100 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{QUT MXB100 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{{[}deleted{]}} via \textcolor{DarkBackground}{\uline{cheatography.com/123338/cs/23171/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}{[}deleted{]} \\ \uline{cheatography.com/deleted-123338} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 11th June, 2020.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{1.84149 cm} x{3.13551 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Differentiation}} \tn % Row 0 \SetRowColor{LightBackground} gradient of a line & m = rise/run = (y2-y1)/(x2 -x1) \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} as lim approaches 0 & m = (lim h→0) f(x + h) - f(x)/h \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} first derivative & f'(x) = df/dx \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} second derivative & f''(x) = d\textasciicircum{}2\textasciicircum{}f/dx\textasciicircum{}2\textasciicircum{} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} third derivative & f'''(x)=d\textasciicircum{}3\textasciicircum{}f/dx\textasciicircum{}3\textasciicircum{} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} d/dx x\textasciicircum{}n\textasciicircum{} = nx\textasciicircum{}n-1\textasciicircum{} & d/dx ln(x) - 1/x \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} d/dx e\textasciicircum{}x\textasciicircum{} = e\textasciicircum{}x\textasciicircum{} & d/dx sin(x) = cos(x) \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{d/dx cos(x) = -sin(x)} \tn % Row Count 15 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{} \tn % Row Count 15 (+ 0) % Row 9 \SetRowColor{white} product rule & y= uv \tn % Row Count 16 (+ 1) % Row 10 \SetRowColor{LightBackground} & y'uv' + vu' \tn % Row Count 17 (+ 1) % Row 11 \SetRowColor{white} chain rule & y = y(u(x)) \tn % Row Count 18 (+ 1) % Row 12 \SetRowColor{LightBackground} & dy/dx = dy/du . du/dx \tn % Row Count 19 (+ 1) % Row 13 \SetRowColor{white} quotient rule & y = u/v \tn % Row Count 20 (+ 1) % Row 14 \SetRowColor{LightBackground} & y' = u'v - uv'/v\textasciicircum{}2\textasciicircum{} \tn % Row Count 21 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{rewrite gradient of line: m= f(x+h) - f(x)/h \newline \newline scalar product rule d/dx (ku(x)) = ku'(x) where k is a scalar \newline derivative of a sum: d/dx. (u(x)+v(x)) = u'(x)+v'(x)} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Vectors}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{sin(𝜃) = opposite/hypotenuse} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{cos(𝜃) = adjacent/hypotenuse} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{tan(𝜃0= opposite/adjacent} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{a\textasciicircum{}2\textasciicircum{}+b\textasciicircum{}2\textasciicircum{}=c\textasciicircum{}2\textasciicircum{}} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.34379 cm} x{3.63321 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Matrices}} \tn % Row 0 \SetRowColor{LightBackground} C = A+B & addition/subtraction \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} 𝐵 = 𝑘𝐴 & 𝑘 is scalar, 𝐴 is 𝑚 . 𝑛 matrix \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} 𝐶 = 𝐴𝐵 & if A = 𝑚 . 𝑛, B = 𝑛 . 𝑘 \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Trig Functions}} \tn % Row 0 \SetRowColor{LightBackground} y = a sin(bx + c) + d & y = a cos(bx + c) + d \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} exponential function & y = e\textasciicircum{}x\textasciicircum{} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} domain & values x can assume \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} range & values y can assume \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{amplitude = a \newline period = 2π/b \newline horizontal shift = - c/b \newline vertical shift = d \newline \newline {\emph{sin(x) starts at 0, cos(x) starts at one}} \newline \newline Expon - e = eulers's constant. \newline \newline domain/range : \_ (\textgreater{} or \textless{}) \_} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Logarithmic Differentiation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{ln(ab) = ln(a) + ln(b)} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{ln(a/b) = ln(a) - ln(b)} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{ln(a\textasciicircum{}b\textasciicircum{}) = b x ln(a)} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{ln(e) = 1} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{e\textasciicircum{}ln(x)\textasciicircum{} = x} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.04057 cm} x{2.93643 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Area Between Curves}} \tn % Row 0 \SetRowColor{LightBackground} ∫f(x)dx - ∫g(x)dx & f(x) = upper function g(x0 = lower function \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Volume of Revolution & V = π ∫ y\textasciicircum{}2\textasciicircum{} dx \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Integrating Ration Functions & f'(x) = x/x\textasciicircum{}2\textasciicircum{}-1 \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.84149 cm} x{3.13551 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Integrals}} \tn % Row 0 \SetRowColor{LightBackground} ∫sin(x)dx & -cos(x) + C \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} ∫cos(x)dx & sin(x) + C \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} ∫e\textasciicircum{}x dx & e\textasciicircum{}x\textasciicircum{} + C \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} ∫1/x dx & ln(x) + C \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} ∫x\textasciicircum{}n\textasciicircum{} dx & x\textasciicircum{}n+1\textasciicircum{}/n+1 + C \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} ∫ln(x) dx & xln(x) - x + C \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{} \tn % Row Count 6 (+ 0) % Row 7 \SetRowColor{white} scalar rule & ∫ ku(x) dx = k∫u(x) dx \tn % Row Count 8 (+ 2) % Row 8 \SetRowColor{LightBackground} integral of a sum & ∫(u(x) + v(x))dx = ∫u(x)dx +∫v(x)dx \tn % Row Count 10 (+ 2) % Row 9 \SetRowColor{white} derivative of intergral & d/dx∫u(x)d x= u(x) \tn % Row Count 12 (+ 2) % Row 10 \SetRowColor{LightBackground} integral of derivative & ∫u'(x)dx =u (x) + C \tn % Row Count 14 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{} \tn % Row Count 14 (+ 0) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Integrals of Common Functions}}} \tn % Row Count 15 (+ 1) % Row 13 \SetRowColor{white} ∫sin(nx) dx & -1/n cos(nx) +C \tn % Row Count 16 (+ 1) % Row 14 \SetRowColor{LightBackground} ∫cos(nx) dx & 1/n sin(nx) = C \tn % Row Count 17 (+ 1) % Row 15 \SetRowColor{white} ∫e\textasciicircum{}nx\textasciicircum{} dx & 1/n e\textasciicircum{}nx\textasciicircum{} + C \tn % Row Count 18 (+ 1) % Row 16 \SetRowColor{LightBackground} ∫ln(nx)dx & 1/n ln(nx) + C \tn % Row Count 19 (+ 1) % Row 17 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{} \tn % Row Count 19 (+ 0) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Integration by Substitution}}} \tn % Row Count 20 (+ 1) % Row 19 \SetRowColor{white} \seqsplit{∫y(u(x))u'(x)dx} & ∫y(u)du \tn % Row Count 22 (+ 2) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Integration by Parts}}} \tn % Row Count 23 (+ 1) % Row 21 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{∫uv' dx = uv- ∫u'v dx} \tn % Row Count 24 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{∫x\textasciicircum{}n\textasciicircum{}dx = x\textasciicircum{}n+1\textasciicircum{}/n+1 + C only applies when n does NOT equal -1}} \newline \newline {\bf{when n= -1, ∫1/x dx applies}} \newline \newline Indefinite Integral: no numbers at top of bottom. \newline \newline Definite Integral: solve for a number that represents the areas under the curve from x=a to x=b \newline no integration constant in this situation} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{rules}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{product rule}}: x multiplied together in different forms eg. y = e\textasciicircum{}2\textasciicircum{}e\textasciicircum{}x\textasciicircum{} \newline \newline {\bf{chain rule}}: \newline inner function u(x) \newline outer function: y(u) \newline \newline looking for function within a function eg. y=ln(sin(x)). \newline {\emph{let u equal the inner function}} \newline \newline {\bf{quotient:}} x in both the numerator and denominator eg. y = e\textasciicircum{}x\textasciicircum{}x\textasciicircum{}2\textasciicircum{} \newline \newline {\bf{remember 1/a\textasciicircum{}n\textasciicircum{} = a\textasciicircum{}-n\textasciicircum{}}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.58804 cm} x{2.38896 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Functions \& Algebraic Structure}} \tn % Row 0 \SetRowColor{LightBackground} y-intercept: where crosses y & solve for y when x = 0 \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} roots: where crosses x & solve for x when y = 0 \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} linear functions & y = mx + c \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} quadratic functions & y = ax\textasciicircum{}2\textasciicircum{} + bx + c \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} turning point & x = -b/2 . a \tn % Row Count 7 (+ 1) % Row 5 \SetRowColor{white} roots of quadratic & use quadratic formula \tn % Row Count 9 (+ 2) % Row 6 \SetRowColor{LightBackground} 2π = 360° & radians = degrees . π/180 \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Function – can have only one output, y, or each unique input, x. \newline Relation - can have more than one output, y, for each unique input, x. \newline \newline may be be more than one root for a function. roots can also be called x-intercepts and zeros \newline \newline linear: mx= gradient/slope C= y-intercept \newline \newline quadratic: pos a = 'happy face', neg a = 'sad face'} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Explicit/Implicit}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Explicit:}} dependent variable is written explicitly in terms of the independent. \newline {\emph{eg. y = 3x + 5}} \newline \newline {\bf{Implicit:}} dependent variable is not isolated to one side of equation \newline {\emph{eg. 3x + 5 - y = 0}} \newline \newline Explicit differentiation: when starting with implicit from that is rearrangeable, rearrange then do. \newline \newline Implicit differentiation: relies on the chain rule. No rearranging required} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.4931 cm} x{3.4839 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Differential Equations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{First Order Separable}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} f(x) dx = g(y) dy & put all x to one side and y to other \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{} \tn % Row Count 3 (+ 0) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Power \& Log Rules}}} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{a\textasciicircum{}b\textasciicircum{} . a\textasciicircum{}c\textasciicircum{} = a\textasciicircum{}b+c\textasciicircum{}} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{a\textasciicircum{}b\textasciicircum{}/a\textasciicircum{}c\textasciicircum{}=a\textasciicircum{}b-c\textasciicircum{}} \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{ln(a\textasciicircum{}b\textasciicircum{})= bln(a)} \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{ln(e) = 1} \tn % Row Count 8 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{e\textasciicircum{}ln(x)\textasciicircum{} = x} \tn % Row Count 9 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Decay}}} \tn % Row Count 10 (+ 1) % Row 10 \SetRowColor{LightBackground} dN/dt = -λN & N = amount of substance, t = time and λ is decay constant \tn % Row Count 13 (+ 3) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Newton's Law of Cooling}}} \tn % Row Count 14 (+ 1) % Row 12 \SetRowColor{LightBackground} dT/dt = -k(T-Ta) & T = Temp of object, Ta is ambient temp, t is time a k is heat transfer constant \tn % Row Count 17 (+ 3) % Row 13 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{} \tn % Row Count 17 (+ 0) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\emph{*Motion Problems}}} \tn % Row Count 18 (+ 1) % Row 15 \SetRowColor{white} v = ds/dt & s = position, v = velocity, a = acceleration, t= time \tn % Row Count 20 (+ 2) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{a = dv/dt} \tn % Row Count 21 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{A differential equation is just a mathematical equation that involves derivatives.}} \newline \newline can have more than one solution} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}