Cheatography

QUT MXB100 Cheat Sheet

by [deleted] via cheatography.com/123338/cs/23171/

Differentiation	
gradient of a line	m = rise/run = (y2-y1)/(x2 -x1)
as lim approaches 0	$m = (\lim h \to 0) f(x + h) - f(x)/h$
first derivative	f'(x) = df/dx
second derivative	$f''(x) = d^2f/dx^2$
third derivative	$f'''(x)=d^3f/dx^3$
$d/dx \ x^n = nx^{n-1}$	$d/dx \ln(x) - 1/x$
$d/dx e^{x} = e^{x}$	$d/dx \sin(x) = \cos(x)$
$d/dx \cos(x) = -\sin^2(x)$	ı(x)
product rule	y= uv
	y'uv' + vu'
chain rule	y = y(u(x))
	$dy/dx = dy/du \cdot du/dx$
quotient rule	y = u/v
	$y' = u'v - uv'/v^2$
rewrite gradient o	of line: $m = f(x+h) - f(x)/h$
scalar product rul	le d/dx ($ku(x)$) = $ku'(x)$
where k is a scala	ar

vectors
$sin(\theta)$ = opposite/hypotenuse
$cos(\theta)$ = adjacent/hypotenuse
tan(θ0= opposite/adjacent

derivative of a sum: d/dx. (u(x)+v(x)) =

teaj via ci	icatogra	priy.com/1200
Matrices		
C = A+B	addition/	subtraction
B = kA	k is scalar, A is m . n matrix	
C = AB	if $A = m$	n, B = n . k
Trig Funct	ions	
y = a sin(b)	(+ c) + d	$y = a \cos(bx + c)$
exponentia function	I	y = e ^x
domain		values x can assume

horizontal shift = - c/b	
vertical shift = d	
sin(x) starts at 0, cos(x) starts at one	
Expon - e = eulers's constant.	

assume

domain/range :	(> or <)	

amplitude = a period = $2\pi/b$

Logarithmic Differentiation
ln(ab) = ln(a) + ln(b)
ln(a/b) = ln(a) - ln(b)
$ln(a^b) = b \times ln(a)$
In(e) = 1
$e^{\ln(x)} = x$

Area Between C	urves
$\int f(x)dx - \int g(x)dx$	f(x) = upper function g(x0 = lower function
Volume of Revolution	$V = \pi \int y^2 dx$
Integrating Ration Functions	$f'(x) = x/x^2-1$

Area Between Curves		
$\int f(x)dx - \int g(x)dx$	f(x) = upper function g(x0 = lower function	
Volume of Revolution	$V = \pi \int y^2 dx$	
Integrating Ration Functions	$f'(x) = x/x^2-1$	
Not published yet. Last updated 11th June, 2020. Page 1 of 2.		

Integrals	
sin(x)dx	-cos(x) + C
∫cos(x)dx	sin(x) + C
∫e^x dx	e ^x + C
∫1/x dx	ln(x) + C
∫x ⁿ dx	$x^{n+1}/n+1 + C$
Jin(x) dx	xIn(x) - x + C
scalar rule	$\int ku(x) dx = k \int u(x) dx$
integral of a sum	$\int (u(x) + v(x))dx = \int u(x)dx$ $+\int v(x)dx$
derivative of intergral	$d/dx \int u(x) dx = u(x)$
integral of derivative	$\int u'(x)dx = u(x) + C$

Integrals of Common Functions		
sin(nx) dx	$-1/n \cos(nx) + C$	
∫cos(nx) dx	$1/n \sin(nx) = C$	
∫e ^{nx} dx	$1/n e^{nx} + C$	
ʃln(nx)dx	1/n ln(nx) + C	

Integration by Substitution				
$\int y(u(x))u'(x)dx$	∫y(u)du			
Integration by Parts				
$\int uv' dx = uv - \int u'v dx$				
. n. n.1				

 $\int x^n dx = x^{n+1}/n+1 + C$ only applies when n does NOT equal -1

when n=-1, $\int 1/x dx$ applies

Indefinite Integral: no numbers at top of bottom.

Definite Integral: solve for a number that represents the areas under the curve from x=a to x=b no integration constant in this situation

u'(x)+v'(x)

 $a^2+b^2=c^2$

By [deleted]

cheatography.com/deleted-

Sponsored by Readable.com Measure your website readability! https://readable.com

QUT MXB100 Cheat Sheet

by [deleted] via cheatography.com/123338/cs/23171/

rules

product rule: x multiplied together in different forms eg. $y = e^2e^x$

chain rule:

inner function u(x) outer function: y(u)

looking for function within a function eg. y=ln(sin(x)).

let u equal the inner function

quotient: x in both the numerator and denominator eg. $y = e^{x}x^{2}$

remember 1/aⁿ = a⁻ⁿ

Functions & Algebraic Structure

y-intercept: where crosses y	solve for y when x = 0
roots: where crosses	solve for x when y = 0
linear functions	y = mx + c
quadratic functions	$y = ax^2 + bx + c$
turning point	x = -b/2. a
roots of quadratic	use quadratic formula
2π = 360°	radians = degrees . π/180

Function – can have only one output, y, or each unique input, x.

Relation - can have more than one output, y, for each unique input, x.

may be be more than one root for a function. roots can also be called x-intercepts and zeros

linear: mx= gradient/slope C= y-intercept

quadratic: pos a = 'happy face', neg a = 'sad face'

Explicit/Implicit

Explicit: dependent variable is written explicitly in terms of the independent. eg. y = 3x + 5

Implicit: dependent variable is not isolated to one side of equation

eg.
$$3x + 5 - y = 0$$

Explicit differentiation: when starting with implicit from that is rearrangeable, rearrange then do.

Implicit differentiation: relies on the chain rule. No rearranging required

Differential Equations

First Order Separable

f(x) put all x to one side and y to other dx = g(y) dy

Power & Log Rules

$$a^b \cdot a^c = a^{b+c}$$

 $a^b/a^c = a^{b-c}$
 $ln(a^b) = bln(a)$
 $ln(e) = 1$
 $e^{ln(x)} = x$

Decay

dN/dt N = amount of substance, t = time = $-\lambda N$ and λ is decay constant

Newton's Law of Cooling

dT/dt T = Temp of object, Ta is ambient = - temp, t is time a k is heat transfer k(T- constant Ta)

*Motion Problems

v = s = position, v = velocity, a = ds/dt acceleration, t = time

By [deleted]

cheatography.com/deleted-123338/ Not published yet.

Last updated 11th June, 2020.

Page 2 of 2.

Differential Equations (cont)

a = dv/dt

A differential equation is just a mathematical equation that involves derivatives.

can have more than one solution

Sponsored by **Readable.com**Measure your website readability!
https://readable.com