Differentiation	
gradient of a line	$\begin{aligned} & m=\text { rise } / \text { run }=(y 2- \\ & y 1) /(x 2-x 1) \end{aligned}$
as lim approaches 0	$\begin{aligned} & m=(\lim h \rightarrow 0) f(x+h)- \\ & f(x) / h \end{aligned}$
first derivative	$\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{df} / \mathrm{dx}$
second derivative	$f^{\prime \prime}(x)=d^{2} f / d x^{2}$
third derivative	$f^{\prime \prime \prime}(x)=d^{3} f / d x^{3}$
$d / d x x^{n}=n x^{n-1}$	$d / d x \ln (x)-1 / x$
$d / d x e^{x}=e^{x}$	$\mathrm{d} / \mathrm{dx} \sin (\mathrm{x})=\cos (\mathrm{x})$
$d / d x \cos (x)=-\sin (x)$	
product rule	$y=u v$
	$y^{\prime} u v^{\prime}+$ vu'
chain rule	$y=y(u(x))$
	$d y / d x=d y / d u . d u / d x$
quotient rule	$y=u / v$
	$y^{\prime}=u^{\prime} v-u v^{\prime} / v^{2}$
rewrite gradient scalar product r where k is a sca derivative of a s $u^{\prime}(x)+v^{\prime}(x)$	line: $m=f(x+h)-f(x) / h$ $d / d x(k u(x))=k u^{\prime}(x)$ $\mathrm{m}: \mathrm{dx} \cdot(u(x)+v(x))=$
Vectors	
$\sin (\theta)=$ opposite/hypotenuse	
$\cos (\theta)=$ adjacent/hypotenuse	
$\tan (\theta 0=$ opposite/adjacent	
$\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$	

By [deleted]

cheatography.com/deleted-
123338/

Matrices
$\mathrm{C}=\mathrm{A}+\mathrm{B} \quad$ addition/subtraction
$B=k A \quad k$ is scalar, A is $m \cdot n$ matrix
$C=A B \quad$ if $\mathrm{A}=m \cdot n, \mathrm{~B}=n \cdot k$
Trig Functions
$\mathrm{y}=\mathrm{a} \sin (\mathrm{bx}+\mathrm{c})+\mathrm{d}$ $\mathrm{y}=\mathrm{a} \cos (\mathrm{bx}+\mathrm{c})+\mathrm{d}$ exponential $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$ function values x can assume domain values y can assume range

amplitude $=\mathrm{a}$
period $=2 \pi / b$
horizontal shift $=-\mathrm{c} / \mathrm{b}$
vertical shift $=\mathrm{d}$
$\sin (x)$ starts at $0, \cos (x)$ starts at one

Expon - e = eulers's constant.
domain/range : _ (> or <) _

Logarithmic Differentiation

$\ln (a b)=\ln (a)+\ln (b)$
$\ln (a / b)=\ln (a)-\ln (b)$
$\ln \left(\mathrm{a}^{\mathrm{b}}\right)=\mathrm{b} x \ln (\mathrm{a})$
$\ln (\mathrm{e})=1$
$e^{\ln (x)}=x$

Area Between Curves

$\int f(x) d x-\int g(x) d x \quad f(x)=$ upper function $g(x 0=$ lower function

Volume of $\quad V=\pi \int y^{2} d x$
Revolution
Integrating $\quad f^{\prime}(x)=x / x^{2}-1$
Ration
Functions

Not published yet.
Last updated 11th June, 2020.
Page 1 of 2.

Integrals	
$\int \sin (x) d x$	$-\cos (x)+C$
$\int \cos (\mathrm{x}) \mathrm{dx}$	$\sin (x)+C$
$\int e^{\wedge} x d x$	$e^{x}+C$
$\int 1 / x d x$	$\ln (\mathrm{x})+\mathrm{C}$
$\int x^{n} d x$	$x^{n+1} / n+1+C$
$\int \ln (\mathrm{x}) \mathrm{dx}$	$x \ln (\mathrm{x})-\mathrm{x}+\mathrm{C}$
scalar rule	$\int k u(x) d x=k \int u(x) d x$
integral of a sum	$\begin{aligned} & \int(u(x)+v(x)) d x=\int u(x) d x \\ & +\int v(x) d x \end{aligned}$
derivative of intergral	$\mathrm{d} / \mathrm{dx} \int \mathrm{u}(\mathrm{x}) \mathrm{d} \mathrm{x}=\mathrm{u}(\mathrm{x})$
integral of derivative	$\int u^{\prime}(x) d x=u(x)+C$

Integrals of Common Functions

$\int \sin (n x) d x$	$-1 / n \cos (n x)+C$
$\int \cos (n x) d x$	$1 / n \sin (n x)=C$
$\int e^{n x} d x$	$1 / n e^{n x}+C$
$\int \ln (n x) d x$	$1 / n \ln (n x)+C$

Integration by Substitution

$\int y(u(x)) u^{\prime}(x) d x \quad \int y(u) d u$

Integration by Parts

$\int u v^{\prime} d x=u v-\int u ' v d x$
$\int x^{n} d x=x^{n+1} / n+1+C$ only applies when n does NOT equal -1

when $\mathrm{n}=-1, \int 1 / \mathrm{xdx}$ applies

Indefinite Integral: no numbers at top of bottom.

Definite Integral: solve for a number that represents the areas under the curve from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$
no integration constant in this situation

Sponsored by Readable.com
 Measure your website readability!
 https://readable.com

rules	
product rule: x multiplied together in different forms eg. $y=e^{2} e^{x}$	
chain rule: inner function $u(x)$ outer function: $\mathrm{y}(\mathrm{u})$	
looking for function within a function eg. $y=\ln (\sin (x))$. let u equal the inner function	
quotient: x in both the numerator and denominator eg. $y=e^{x} x^{2}$	
remember $1 / a^{n}=a^{-n}$	
Functions \& Algebraic Structure	
y-intercept: where crosses y	solve for y when x $=0$
roots: where crosses X	solve for x when y $=0$
linear functions	$y=m x+c$
quadratic functions	$y=a x^{2}+b x+c$
turning point	$x=-b / 2 \cdot a$
roots of quadratic	use quadratic formula
$2 \pi=360^{\circ}$	$\begin{aligned} & \text { radians = degrees } \\ & \pi / 180 \end{aligned}$

Function - can have only one output, y, or each unique input, x.
Relation - can have more than one output, y, for each unique input, x.
may be be more than one root for a function. roots can also be called x-intercepts and zeros
linear: $m x=$ gradient/slope $C=y$-intercept
quadratic: pos a = 'happy face', neg a = 'sad face'

By [deleted]

cheatography.com/deleted-
123338/

Explicit/Implicit

Explicit: dependent variable is written explicitly in terms of the independent.
eg. $y=3 x+5$

Implicit: dependent variable is not isolated
to one side of equation
eg. $3 x+5-y=0$

Explicit differentiation: when starting with implicit from that is rearrangeable, rearrange then do.

Implicit differentiation: relies on the chain rule. No rearranging required

Differential Equations

First Order Separable

$f(x) \quad$ put all x to one side and y to other
$d x=$
g(y)
dy

Power \& Log Rules

$a^{b} \cdot a^{c}=a^{b+c}$
$a^{b} / a^{c}=a^{b-c}$
$\ln \left(a^{b}\right)=b \ln (a)$
$\ln (e)=1$
$e^{\ln (x)}=x$

Decay
dN/dt $\quad N=$ amount of substance, $t=$ time
$=-\lambda \mathrm{N}$ and λ is decay constant

Newton's Law of Cooling

$\mathrm{dT} / \mathrm{dt} \quad \mathrm{T}=\mathrm{Temp}$ of object, Ta is ambient = - temp, t is time a k is heat transfer k(T- constant
Ta)

$$
\begin{aligned}
& \text { *Motion Problems } \\
& \begin{array}{l}
\mathrm{v}= \\
\mathrm{s}=\text { position, } \mathrm{v}=\text { velocity, } \mathrm{a}= \\
\mathrm{ds} / \mathrm{dt} \\
\text { acceleration, } \mathrm{t}=\text { time }
\end{array}
\end{aligned}
$$

Not published yet.
Last updated 11th June, 2020.
Page 2 of 2.

Differential Equations (cont)

$\mathrm{a}=\mathrm{dv} / \mathrm{dt}$
A differential equation is just a mathematical equation that involves derivatives.
can have more than one solution

Sponsored by Readable.com
Measure your website readability!
https://readable.com

