

QUT MXB100 Cheat Sheet

by [deleted] via cheatography.com/123338/cs/23171/

n = rise/run = (y2- y1)/(x2-x1) n = (lim h→0) f(x + h) - (x)/h f(x) = df/dx $f'(x) = d^2f/dx^2$ $f'''(x) = d^3f/dx^3$	
$f(x)/h$ $f(x) = df/dx$ $f'(x) = d^{2}f/dx^{2}$ $f''(x) = d^{3}f/dx^{3}$	
$f''(x) = d^2f/dx^2$ $f'''(x) = d^3f/dx^3$	
$"(x)=d^3f/dx^3$	
. ,	
1/-b - b- /- / - 1 /- 1	
I/dx In(x) - 1/x	
$I/dx \sin(x) = \cos(x)$	
$d/dx \cos(x) = -\sin(x)$	
r= uv	
'uv' + vu'	
y = y(u(x))	
$dy/dx = dy/du \cdot du/dx$	
v = u/v	
$v' = u'v - uv'/v^2$	
ne: m= f(x+h) - f(x)/h	
scalar product rule d/dx (ku(x)) = ku'(x) where k is a scalar	

Vectors
$sin(\theta)$ = opposite/hypotenuse
$cos(\theta)$ = adjacent/hypotenuse
$tan(\theta 0 = opposite/adjacent$
$a^2+b^2=c^2$

Matrices	
C = A+B	addition/subtraction
$B = \square$ $\square A$	k is scalar, A is m . n matrix
$C = \square$ $\square B$	if $A = m . n, B = n . k$

Trig Functions		
$y = a \sin(bx + c) + d$	$y = a \cos(bx + c) + d$	
exponential function	$y = e^{x}$	
Tunction		
domain	values x can	
	assume	
range	values y can	
	assume	
amplitude = a		
period = 2π/b		
horizontal shift = - c/b		
vertical shift = d		
sin(x) starts at 0, cos(x) starts at one		
Expon - e = eulers's constant.		
domain/range : _ (> or <) _		

Logarithmic Differentiation	
ln(ab) = ln(a) + ln(b)	
ln(a/b) = ln(a) - ln(b)	
$ln(a^b) = b \times ln(a)$	
In(e) = 1	
$e^{\ln(x)} = x$	

Area Between Curves			
$\int f(x)dx - \int g(x)dx$	f(x) = upper function g(x0 = lower function		
Volume of Revolution	$V = \pi \int y^2 dx$		
Integrating Ration Functions	$f'(x) = x/x^2-1$		

Integrals	
$\int \sin(x)dx$	$-\cos(x) + C$
$\int \cos(x) dx$	sin(x) + C
∫e^x dx	e ^x + C
$\int 1/x dx$	ln(x) + C
$\int\! x^n\;dx$	$x^{n+1}/n+1 + C$
$\int ln(x) dx$	xIn(x) - x + C
scalar rule	$\int ku(x) dx = k \int u(x) dx$
integral of a sum	$\int (u(x) + v(x))dx = \int u(x)dx$ $+ \int v(x)dx$
derivative of intergral	$d/dx\int u(x)dx = u(x)$
integral of derivative	$\int u'(x)dx = u(x) + C$

Integrals of Common Functions			
∫sin(nx) dx	-1/n cos(nx) +C		
∫cos(nx) dx	$1/n \sin(nx) = C$		
∫e ^{nx} dx	1/n e ^{nx} + C		
∫ln(nx)dx	1/n ln(nx) + C		

Integration by Substitution			
$\int y(u(x))u'(x)dx$	∫y(u)du		
Integration by Parts			

 $\int uv' dx = uv - \int u'v dx$

 $\int x^n dx = x^{n+1}/n+1 + C$ only applies when n does NOT equal -1

when n= -1, $\int 1/x \, dx$ applies

Indefinite Integral: no numbers at top of bottom.

Definite Integral: solve for a number that represents the areas under the curve from x=a to x=b no integration constant in this situation

C

u'(x)+v'(x)

By [deleted]

cheatography.com/deleted-

Not published yet. Last updated 11th June, 2020. Page 1 of 2.

Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords!

http://crosswordcheats.com

QUT MXB100 Cheat Sheet

by [deleted] via cheatography.com/123338/cs/23171/

rules

product rule: x multiplied together in different forms eg. $y = e^2 e^x$

chain rule:

inner function u(x) outer function: y(u)

looking for function within a function eg. y=ln(sin(x)).

let u equal the inner function

quotient: x in both the numerator and denominator eg. $y = e^{x}x^{2}$

remember 1/aⁿ = a⁻ⁿ

Functions & Algebraic Structure

y-intercept: where crosses y	solve for y when x = 0
roots: where crosses	solve for x when y = 0
linear functions	y = mx + c
quadratic functions	$y = ax^2 + bx + c$
turning point	x = -b/2. a
roots of quadratic	use quadratic formula
2π = 360°	radians = degrees . π/180

Function - can have only one output, y, or each unique input, x.

Relation - can have more than one output, y, for each unique input, x.

may be be more than one root for a function. roots can also be called x-intercepts and zeros

linear: mx= gradient/slope C= y-intercept

quadratic: pos a = 'happy face', neg a = 'sad face'

Explicit/Implicit

Explicit: dependent variable is written explicitly in terms of the independent. eg. y = 3x + 5

Implicit: dependent variable is not isolated to one side of equation

eg.
$$3x + 5 - y = 0$$

Explicit differentiation: when starting with implicit from that is rearrangeable, rearrange then do.

Implicit differentiation: relies on the chain rule. No rearranging required

First Order Separable

f(x) put all x to one side and y to other dx =g(y)dy

Power & Log Rules

$$a^{b} \cdot a^{c} = a^{b+c}$$
 $a^{b}/a^{c} = a^{b-c}$
 $ln(a^{b}) = bln(a)$
 $ln(e) = 1$
 $e^{ln(x)} = x$

Decay

dN/dt N = amount of substance, t = time $= -\lambda N$ and λ is decay constant

Newton's Law of Cooling

T = Temp of object, Ta is ambient dT/dt temp, t is time a k is heat transfer constant k(T-Ta)

*Motion Problems

v = s = position, v = velocity, a = ds/dt acceleration, t= time

By [deleted] cheatography.com/deleted-123338/

Not published yet. Last updated 11th June, 2020. Page 2 of 2.

Differential Equations (cont)

a = dv/dt

A differential equation is just a mathematical equation that involves derivatives.

can have more than one solution

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

