Cheatography

QUT MXB100 Cheat Sheet

by [deleted] via cheatography.com/123338/cs/23171/

D''' 1' 1'	
Differentiation	
gradient of a line	m = rise/run = (y2-y1)/(x2-x1)
as lim approaches 0	$m = (\lim h \to 0) f(x + h) - f(x)/h$
first derivative	f'(x) = df/dx
second derivative	$f''(x) = d^2f/dx^2$
third derivative	$f'''(x)=d^3f/dx^3$
$d/dx \ x^n = nx^{n-1}$	d/dx ln(x) - 1/x
$d/dx e^{X} = e^{X}$	$d/dx \sin(x) = \cos(x)$
$d/dx \cos(x) = -\sin(x)$	
product rule	y= uv
	y'uv' + vu'
chain rule	y = y(u(x))
	$dy/dx = dy/du \cdot du/dx$
quotient rule	y = u/v
	$y' = u'v - uv'/v^2$
rewrite gradient of line: m= f(x+h) - f(x)/h	
scalar product rule d/dx ($ku(x)$) = $ku'(x)$ where k is a scalar	

vectors	
$sin(\theta)$ = opposite/hypotenuse	
$cos(\theta)$ = adjacent/hypotenuse	
$tan(\theta 0 = opposite/adjacent$	

derivative of a sum: d/dx. (u(x)+v(x)) =

Matrices			
C = A+B	addition/subtraction		
B = kA	\boldsymbol{k} is scalar, \boldsymbol{A} is \boldsymbol{m} . \boldsymbol{n} matrix		
C = AB	if $A = m \cdot n$, $B = n \cdot k$		
Trig Functions			
1 /1	\		

Trig Functions		
$y = a \sin(bx + c) + d$	$y = a \cos(bx + c) + d$	
exponential	$y = e^{x}$	
function		
domain	values x can	
	assume	
range	values y can	
	assume	
amplitude = a		
period = 2π/b		
horizontal shift = - c/b		
vertical shift = d		
sin(x) starts at 0, cos(x) starts at one		
Expon - e = eulers's constant.		
domain/range : _ (> or <) _		

Logarithmic Differentiation
ln(ab) = ln(a) + ln(b)
ln(a/b) = ln(a) - ln(b)
$ln(a^b) = b \times ln(a)$
In(e) = 1
$e^{\ln(x)} = x$

Area Between C	urves
$\int f(x)dx - \int g(x)dx$	f(x) = upper function g(x0 = lower function
Volume of Revolution	$V = \pi \int y^2 dx$
Integrating Ration Functions	$f'(x) = x/x^2-1$

Integrals	
∫sin(x)dx	-cos(x) + C
∫cos(x)dx	sin(x) + C
∫e^x dx	$e^{x} + C$
$\int 1/x dx$	ln(x) + C
$\int x^n dx$	$x^{n+1}/n+1 + C$
∫ln(x) dx	xln(x) - x + C
scalar rule	$\int ku(x) dx = k \int u(x) dx$
integral of a sum	$\int (u(x) + v(x))dx = \int u(x)dx$ $+\int v(x)dx$
derivative of intergral	$d/dx \int u(x)dx = u(x)$
integral of derivative	$\int \!\! u'(x) dx = \!\! u(x) + C$

Integrals of Common Functions		
sin(nx) dx	$-1/n \cos(nx) + C$	
ʃcos(nx) dx	$1/n \sin(nx) = C$	
∫e ^{nx} dx	1/n e ^{nx} + C	
ʃln(nx)dx	1/n ln(nx) + C	

Integration by Substitution			
$\int y(u(x))u'(x)dx$	∫y(u)du		
Integration by Parts			
$\int uv' dx = uv - \int u'v dx$			
- n - n · 1 · ·			

 $\int x^n dx = x^{n+1}/n+1 + C$ only applies when n does NOT equal -1

when n=-1, $\int 1/x dx$ applies

Indefinite Integral: no numbers at top of bottom.

Definite Integral: solve for a number that represents the areas under the curve from x=a to x=b no integration constant in this situation

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!

https://apollopad.com

u'(x)+v'(x)

 $a^2+b^2=c^2$

By [deleted]

cheatography.com/deleted-123338/ Not published yet. Last updated 11th June, 2020. Page 1 of 2.

QUT MXB100 Cheat Sheet

by [deleted] via cheatography.com/123338/cs/23171/

rules

product rule: x multiplied together in different forms eg. $y = e^2e^x$

chain rule:

inner function u(x) outer function: y(u)

looking for function within a function eg. y=ln(sin(x)).

let u equal the inner function

quotient: x in both the numerator and denominator eg. $y = e^{x}x^{2}$

remember 1/aⁿ = a⁻ⁿ

Functions & Algebraic Structure

y-intercept: where crosses y	solve for y when x = 0
roots: where crosses	solve for x when y = 0
linear functions	y = mx + c
quadratic functions	$y = ax^2 + bx + c$
turning point	x = -b/2. a
roots of quadratic	use quadratic formula
2π = 360°	radians = degrees . $\pi/180$

Function – can have only one output, y, or each unique input, x.

Relation - can have more than one output, y, for each unique input, x.

may be be more than one root for a function. roots can also be called x-intercepts and zeros

linear: mx= gradient/slope C= y-intercept

quadratic: pos a = 'happy face', neg a = 'sad face'

Explicit/Implicit

Explicit: dependent variable is written explicitly in terms of the independent. eg. y = 3x + 5

Implicit: dependent variable is not isolated to one side of equation

eg.
$$3x + 5 - y = 0$$

Explicit differentiation: when starting with implicit from that is rearrangeable, rearrange then do.

Implicit differentiation: relies on the chain rule. No rearranging required

Differential Equations

First Order Separable

f(x) put all x to one side and y to other dx = g(y) dy

Power & Log Rules

$$a^{b}$$
. $a^{c} = a^{b+c}$
 $a^{b}/a^{c} = a^{b-c}$
 $ln(a^{b}) = bln(a)$
 $ln(e) = 1$
 $e^{ln(x)} = x$

Decay

dN/dt N = amount of substance, t = time = $-\lambda N$ and λ is decay constant

Newton's Law of Cooling

 $dT/dt \qquad T = Temp \ of \ object, \ Ta \ is \ ambient$ $= - \qquad temp, \ t \ is \ time \ a \ k \ is \ heat \ transfer$ $k(T- \qquad constant$ Ta)

*Motion Problems

v = s = position, v = velocity, a = ds/dt acceleration, t = time

By [deleted]

cheatography.com/deleted-123338/ Not published yet. Last updated 11th June, 2020. Page 2 of 2.

Differential Equations (cont)

a = dv/dt

A differential equation is just a mathematical equation that involves derivatives.

can have more than one solution

Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!

https://apollopad.com