
Java Interview Questions Cheat Sheet
by Dedicator9403 via cheatography.com/186788/cs/39054/

Other ConceptsOther Concepts

Dependency
Injection

Dependency Injection is a design pattern used in software development to manage dependencies between objects. It allows the
dependencies of a class to be provided externally, rather than having the class create or manage them internally. This pattern
promotes loose coupling and makes the code more modular, testable, and maintainable.

Dependency
Injection in
Spring

Dependency Injection (DI) is a fundamental concept in the Spring framework, which provides a powerful and flexible way to
manage dependencies in a Java application. Spring's DI container, also known as the Spring IoC (Inversion of Control)
container, is responsible for instantiating and wiring dependencies for your application.

Lifecycle of
a Spring
bean

1. Bean Definition1. Bean Definition: In this stage, the bean configuration is defined in either XML or Java-based configuration. It includes
specifying the bean class, dependencies, and other properties.

 2. Instantiation2. Instantiation: During this stage, the Spring container creates an instance of the bean based on the bean definition. The
container uses the bean's constructor or a factory method to create the object.

 3. Dependency Injection3. Dependency Injection: Once the bean is instantiated, the container injects any required dependencies into the bean. This can
be done through constructor injection, setter injection, or field injection.

 4. Bean Post-Processing4. Bean Post-Processing: After dependency injection, Spring applies any registered BeanPostProcessors to modify the bean
instance. BeanPostProcessors can perform tasks such as initializing proxy objects or adding additional behavior to the bean.

By Dedicator9403Dedicator9403

cheatography.com/dedicator9403/

Not published yet.
Last updated 5th June, 2023.
Page 1 of 6.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/dedicator9403/
http://www.cheatography.com/dedicator9403/cheat-sheets/java-interview-questions
http://www.cheatography.com/dedicator9403/
https://readable.com

Java Interview Questions Cheat Sheet
by Dedicator9403 via cheatography.com/186788/cs/39054/

Other Concepts (cont)Other Concepts (cont)

 5. Initialization5. Initialization: At this stage, any initialization logic specified for the bean is executed. This can involve implementing the Initializ‐
ingBean interface, defining custom initialization methods using annotations, or specifying initialization methods in the bean
configuration.

 6. Ready for Use6. Ready for Use: After initialization, the bean is ready for use. It can now respond to requests and perform its designated tasks.

 7. Usage7. Usage: During this stage, the bean is actively used by other components or services in the application. It carries out its
assigned functionality and can be accessed and manipulated as needed.

 8. Destruction8. Destruction: When the bean is no longer needed or when the application is shutting down, the container triggers the destru‐
ction of the bean. This involves executing any defined destruction logic, such as implementing the DisposableBean interface,
specifying custom destruction methods using annotations, or defining destruction methods in the bean configuration.

Spring IoC
(Inversion of
Control)
container

The Spring IoC (Inversion of Control) container is a core component of the Spring framework that manages the lifecycle and
dependencies of objects (beans) in a Spring application. The IoC container is responsible for creating, configuring, and wiring
the beans, allowing developers to focus on writing the business logic of their application.

BasicBasic

Basic (cont)Basic (cont)

PackagePackage group of similar classes,
interface and sub package.

 java.lang package is imported
implicitly(Throwable, Iterable,
Comparable, Object).

STRINGSTRING

JavaJava
StringString

Immutable

 Literals — stored in string
constant pool(inside heap)intern()

 Object — stored directly in heap

 When the intern() method is
executed then it checks whether
the String equals to this String
Object is in the pool or not. If it is
available, then the string from the
pool is returned. Otherwise, this
String object is added to the pool
and a reference to this String
object is returned.

String‐String‐
BufferBuffer

mutable

 thread safe and synchronized

 less efficient than StringBuilder

String‐String‐
BuilderBuilder

mutable

 non-synchronized,i.e., not thread
safe

 more efficient than StringBuffer

ObjectObject

Every class in Java is directly or indirectly
derived from the Object class.

toString()toString() : provides String representation of
an Object. The default toString() method for
class Object returns a string consisting of
class name+@+unsigned hexadecimal
representation of the hash code of the
object.

hashCode()hashCode() : For every object, JVM
generates a unique number which is
hashcode.

equals(Object obj)equals(Object obj) : Compares the given
object to “this” object

finalize()finalize() method : This method is called
just before an object is garbage collected. It
is called by the Garbage Collector on an
object when garbage collector determines
that there are no more references to the
object.

clone()clone() : It returns a new object that is
exactly the same as this object

wait()wait(), notify()notify() notifyAll()notifyAll() are related to
Concurrency.

OOPOOP

http://www.cheatography.com/
http://www.cheatography.com/dedicator9403/
http://www.cheatography.com/dedicator9403/cheat-sheets/java-interview-questions

JavaJava
languagelanguage
andand
platformplatform

Java language : High level,
Platform Independent, Portable

 Java platform : JRE and API

JVM,JVM,
JRE &JRE &
JDKJDK

JVM : VM that provide specif‐
ication for JRE.

 JRE : implementation of JVM
where the byte code get
executed.

 JDK : JRE + Tools (javac,
javadoc, jar).

StaticStatic Static Variable : belong to class
and get memory only once in
class area at the time of class
loading.

 Static Method : belong to class,
cant use non static variables
and methods inside if it is not
known

 Static Block : initialize static
variables and executed before
main method at the time of
class loading.

 Static Import : access any static
member of a class directly.
There is no need to qualify it by
the class name in program.

AccessAccess
ModifiersModifiers

Public > Protected > Default >
Private

FinalFinal variable (can’t change,
constant), method(can’t
override), class (can’t inherit)

ObjectObject real time entity with state and
behavior.

ClassClass collection of similar Objects.

 Constructor : special function used
to initialize state of an object. No
return Type but returns current
instance of the class. Not inherited
so cant make final. Called by
super() method from child
class.Cant have this() and Super()
together in constructor as both
should be the first statement.

 this : points current object, it is
final type, can be used in synchr‐
onized block

By Dedicator9403Dedicator9403

cheatography.com/dedicator9403/

Not published yet.
Last updated 5th June, 2023.
Page 3 of 6.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/dedicator9403/
https://readable.com

Java Interview Questions Cheat Sheet
by Dedicator9403 via cheatography.com/186788/cs/39054/

OOP (cont)OOP (cont)

EncapsEncaps
ulationulation

wrapping data and associated
function into single unit
implements data hiding using
private property accessed using
getter and setter methods.

Inheri‐Inheri‐
tancetance

mechanism by which one class
acquire properties and behavior
of another on class, Code re-usa‐
bility.

 Super : points to parent class
object.

PolymoPolymo
rphismrphism

same message can be
processed in more than one form.

 Method Overloading : same
function name but differ in
number and type of arguments
within the same class, Readab‐
ility , Compile time.

 Method overriding : specific
implementation of method in child
class which is already defined in
defined in parent class, Run
time(only method not property).

 Covarient return type : child class
method return type should be sub
type of return type of parent
class.

Abstra‐Abstra‐
ctionction

implementation hiding using
Abstract class and Interface.

 Abstract class : cant be instan‐
tiated, should have at least one
abstract method, can have
constructor(called by extended
class constructor during object
creation).

 Interface : no constructor and
instance, public static final
members.

OOP (cont)OOP (cont)

 Tagged/Marker interface: no
members defined, used to give
mark/tag. eg: serializable,
clonable.

RelationRelation Association : relationship where
all objects have their own life-
cycle & there is no ownership.
eg: teacher-student

 Aggregation : special type of
association, separate life cycle
but there is ownership eg :
department- teacher

 Composition : Special type of
aggregation, no separate life
cycle and if parent deleted, all
child will get delete.

CollectionCollection

CollectionCollection Interface in java.util package
extended Iterable interface.

ListList maintain insertion order,
include duplicate elements,
can have null entry.

 ArrayList : dynamic array,
index based, best for store and
fetch, increases size by half

 LinkedList : doubly linked list,
best for adding and removing

QueueQueue PriorityQueue, Dequeue-Arra‐
yDequeue

 PriorityQueue : min/max heap

SetSet no duplicate elements

 HashSet : no order maintained,
can have single null

 LinkedHashSet : insertion
order maintained, can have
single null

 TreeSet : sorted, no null value

Collection (cont)Collection (cont)

MapMap key value pair, unique key

 HashMap : no order, can have
single null key

 LinkedHashMap : insertion
order, can have single null key

 TreeMap : sorted based on key,
can’t have any null key

Collec‐Collec‐
tionstions

java.util.Collections utility class

 Sorting : List by Collections.s‐
ort(), Set by converting to
TreeSet, Map by converting to
TreeMap, Need to implement
Comparable or Comparator

 Comparable : lang, compar‐
eTo(), change base class, single
sort logic

 Comparator : util, compare(),
don’t change base class,
multiple sort logic

 Unmodifiable : unmodifiableCol‐
lection() return an unmodifiable
view of the specified collection

LegacyLegacy
ClassClass

all are synchronized and thread
safe

 Property, Vector(increase size
by double), Stack, HashTa‐
ble(no null key and null value)

IterationIteration Iterator : legacy iteration
support, list and set, can
remove, forward only

 ListIterator : legacy iteration
support, list, can remove and
add, forward and backward

 Enumerator : only for legacy
support

By Dedicator9403Dedicator9403

cheatography.com/dedicator9403/

Not published yet.
Last updated 5th June, 2023.
Page 4 of 6.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/dedicator9403/
http://www.cheatography.com/dedicator9403/cheat-sheets/java-interview-questions
http://www.cheatography.com/dedicator9403/
https://readable.com

Java Interview Questions Cheat Sheet
by Dedicator9403 via cheatography.com/186788/cs/39054/

Collection (cont)Collection (cont)

 To successfully store and retrieve objects
from a Hashtable, the objects used as keys
must implement the hashCode method and
the equals method. Because hashcode
used to find the bucket and equals used to
replace existing value in that place of
bucket.(if equals not overridden then it
insert into a new LinkedList node that it
use. It it total violation of rule as key are
unique in map)

EXCEPTION HANDLINGEXCEPTION HANDLING

ThrowableThrowable exception and error

ExceptionException can be handled using try-
catch block or throws.

 checked and unchecked
exception

CheckedChecked
exceptionexception

found at compile time.

 ClassNotFoundException,
SQLException, IOException

UncheckedUnchecked
exceptionexception

occur during run time.

 ArithematicException,
NumberFormatException,
NullPointerException, Arrray‐
IndexOutOfBoundException,
StringIndexOutOfBoundExc‐
eption

ErrorError cant be handled

 Irrecovarable

 StackOverflowError

FinallyFinally block after try/catch, always
executed (not if program
exits)

EXCEPTION HANDLING (cont)EXCEPTION HANDLING (cont)

ThrowThrow keyword, within method,
followed by instance, single,
cant propagate checked
exception

ThrowsThrows keyword, within method
signature, followed by class,
multiple, can propagate
checked exception

ExceptionException
OverridingOverriding

if parent method not defined
exception, child cant define
checked exception but can
define unchecked

 else child can define only sub
class exception

Try withTry with
resourceresource

autoclosable

ConcurrencyConcurrency

Fail-Fail-
fastfast

immediately throws Concurrentmo‐
dificationException, if any structural
modification occur

GenericsGenerics

GenericGeneric Generics in programming
languages, such as Java, allow
the creation of classes, interf‐
aces, and methods that can work
with different types, providing
flexibility and type safety. It
enables the definition of generic
algorithms and data structures
that can be used with various
types without sacrificing type
checking at compile time.

Wildca‐Wildca‐
rd(?)rd(?)

Lower-bound <? super type>

 Upper-bound <? type>

 Unbound <?>

MemoryMemory

TypesTypes Heap Area, Method Area,
Stack, Native Method Stack &
PC Register

 You can not force Garbage
collection in Java. Though you
can request it by calling
Sytem.gc() or its cousin
Runtime.getRuntime().gc(). It’s
not guaranteed that GC will
run immediately as result of
calling these method

ImmutableImmutable
ClassClass
CreationCreation

Declare the class as final so it
can’t be extended.

 Make all fields private so that
direct access is not allowed.

 Don’t provide setter methods
for variables

 Make all mutable fields final
so that it’s value can be
assigned only once.

 Initialize all the fields via a
constructor performing deep
copy.

 Perform cloning of objects in
the getter methods to return a
copy rather than returning the
actual object reference.

DeepDeep
Copy andCopy and
ShallowShallow
CopyCopy

The shallow copy is the
approach when we only copy
field values and therefore the
copy might be dependent on
the original object.

By Dedicator9403Dedicator9403

cheatography.com/dedicator9403/

Not published yet.
Last updated 5th June, 2023.
Page 5 of 6.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/dedicator9403/
http://www.cheatography.com/dedicator9403/cheat-sheets/java-interview-questions
http://www.cheatography.com/dedicator9403/
https://readable.com

Java Interview Questions Cheat Sheet
by Dedicator9403 via cheatography.com/186788/cs/39054/

Memory (cont)Memory (cont)

 In the deep copy approach, we make sure
that all the objects in the tree are deeply
copied, so the copy isn’t dependent on any
earlier existing object that might ever
change.

SOLID PrinciplesSOLID Principles

SSingle
Respon‐
sibility
Principle

The Single Responsibility
Principle states that a class
should have only one reason to
change, meaning it should have
only one responsibility or job. In
other words, a class should have
a single purpose or focus.

OOpen-
Closed
Principle
(OCP)

The Open-Closed Principle
states that software entities
(classes, modules, functions,
etc.) should be open for
extension but closed for modifi‐
cation. In other words, the
behavior of a software entity
should be easily extendable
without modifying its existing
code.

SOLID Principles (cont)SOLID Principles (cont)

LLiskov
Substi‐
tution
Principle
(LSP):

The Liskov Substitution
Principle states that objects of a
superclass should be replac‐
eable with objects of its
subclasses without affecting the
correctness of the program. In
other words, a subclass should
be able to be used wherever its
superclass is expected, without
causing any unexpected
behavior.

IInterface
Segreg‐
ation
Principle
(ISP):

The Interface Segregation
Principle states that clients
should not be forced to depend
on interfaces they do not use. It
suggests that interfaces should
be specific to the needs of the
clients, and no client should be
obligated to depend on methods
it does not need.

SOLID Principles (cont)SOLID Principles (cont)

DDependency
Inversion
Principle
(DIP):

The Dependency Inversion
Principle states that high-high-
level modules should notlevel modules should not
depend on low-leveldepend on low-level
modules. Instead, bothmodules. Instead, both
should depend on abstra‐should depend on abstra‐
ctionsctions. It also states that
abstractions should not
depend on details; details
should depend on abstra‐
ctions.

By Dedicator9403Dedicator9403

cheatography.com/dedicator9403/

Not published yet.
Last updated 5th June, 2023.
Page 6 of 6.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/dedicator9403/
http://www.cheatography.com/dedicator9403/cheat-sheets/java-interview-questions
http://www.cheatography.com/dedicator9403/
https://readable.com

	Java Interview Questions Cheat Sheet - Page 1
	Other Concepts

	Java Interview Questions Cheat Sheet - Page 2
	Basic
	Object
	STRING
	OOP

	Java Interview Questions Cheat Sheet - Page 4
	Collection

	Java Interview Questions Cheat Sheet - Page 5
	Memory
	EXCEPTION HANDLING
	Concurrency
	Generics

	Java Interview Questions Cheat Sheet - Page 6
	SOLID Principles

