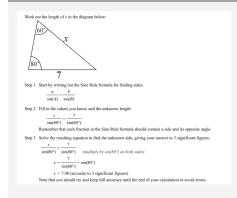


# Y10 trigonometry

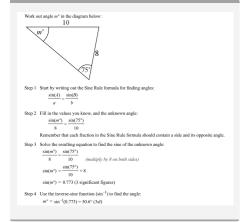
by deathrobotpunch via cheatography.com/215339/cs/46903/

### Trigonometric Functions




## pythagoras's theorem

| $c^2 = a^2 + b^2$                                                   | $c = \sqrt{a^2 + b^2}$ |  |  |
|---------------------------------------------------------------------|------------------------|--|--|
| $a^2 = c^2 - b^2$                                                   | $a = \sqrt{c^2 - b^2}$ |  |  |
| $b^2 = c^2 - a^2$                                                   | $b = \sqrt{c^2 - a^2}$ |  |  |
| c is the hypotenuse whereas a and b can be switched interchangeably |                        |  |  |


#### Sine and cosine rule



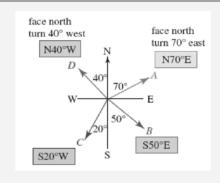
## Sine rule finding side example



# Sine rule Finding Angles example



Subtract angles of depression by 90 degrees


#### Scale Factor

#### Scale Factor

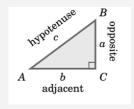
Scale factor is the ratio between the scale of a given original object and a new object, which is its representation but of a different size (bigger or smaller).

sf = larger figure dimensions ÷ smaller figure dimensions

### true bearings

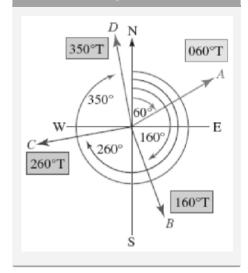


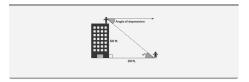
# angle of elevation example

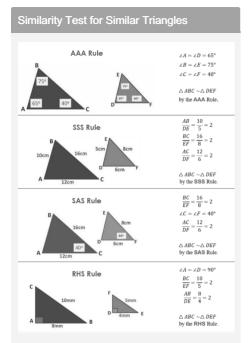

| B     | $\sin \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{a}{c}$ | $\theta = \left(\frac{a}{c}\right)$ |
|-------|------------------------------------------------------------------------------|-------------------------------------|
| 5/ a  | $\cos \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{b}{c}$ | $\theta = \left(\frac{b}{c}\right)$ |
| A B C | $\tan tan \theta = \frac{opposite}{adjacent} = \frac{a}{b}$                  | $\theta = \left(\frac{a}{b}\right)$ |

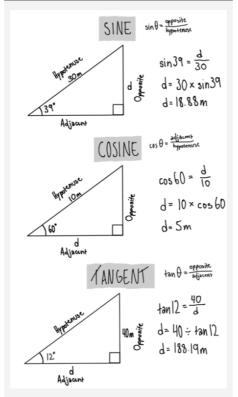
# angle of depression example

| $\sin \sin \theta = \frac{\text{opposite}}{\text{hypotenuce}} = \frac{a}{c}$ | $\theta = \left(\frac{a}{c}\right)$ | A      |
|------------------------------------------------------------------------------|-------------------------------------|--------|
| $\cos \cos \theta = \frac{adjacent}{hypotenuse} = \frac{\delta}{\delta}$     | $\theta = \left(\frac{b}{c}\right)$ |        |
| $\tan tan  \theta = \frac{opposite}{adjacent} = \frac{a}{b}$                 | $\theta = \left(\frac{a}{b}\right)$ | с<br>В |


### **Examples of Trigonometric functions**


### Examples of inverse functions





to solve A: sin-1 (a / c) or cos-1 (adjacent/hypotenuse) or tan-1 (a/b) to solve B: sin-1 (b/c) cos-1 (a/c) tan-1 (b/a)

### conventional bearings











## By deathrobotpunch

cheatography.com/deathrobotpunch/

Published 26th August, 2025. Last updated 25th August, 2025. Page 1 of 2. Sponsored by Readable.com

Measure your website readability!

https://readable.com