\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{davnav} \pdfinfo{ /Title (nervous-system-npb-101.pdf) /Creator (Cheatography) /Author (davnav) /Subject (Nervous System NPB 101 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Nervous System NPB 101 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{davnav} via \textcolor{DarkBackground}{\uline{cheatography.com/213585/cs/46491/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}davnav \\ \uline{cheatography.com/davnav} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 27th May, 2025.\\ Updated 28th May, 2025.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{1.2531 cm} x{2.0885 cm} p{0.4177 cm} p{0.4177 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{Diffusion Potential}} \tn % Row 0 \SetRowColor{LightBackground} The net movement of random collisions between molecules. & There are {\emph{two types}} of diffusion & & \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} {\bf{Diffusion down a \seqsplit{concentration} gradient}} & Concentration\textasciitilde{}(chemical)\textasciitilde{} gradient. eg. O\textasciitilde{}2\textasciitilde{}, CO\textasciitilde{}2\textasciitilde{}, and fatty acids, Na\textasciicircum{}+\textasciicircum{}, K\textasciicircum{}+\textasciicircum{}, Ca\textasciicircum{}2+\textasciicircum{}, Cl\textasciicircum{}-\textasciicircum{} & & \tn % Row Count 10 (+ 5) % Row 2 \SetRowColor{LightBackground} Rate of Diffusion {\emph{Through a Membrane}} is dependent on five factors: & Electrical gradient. eg. Na\textasciicircum{}+\textasciicircum{}, K\textasciicircum{}+\textasciicircum{}, Ca\textasciicircum{}2+\textasciicircum{}, Cl\textasciicircum{}-\textasciicircum{} & & \tn % Row Count 16 (+ 6) % Row 3 \SetRowColor{white} 1) Magnitude of the \seqsplit{concentration} gradient. As \seqsplit{concentration} gradient increases, the rate of diffusion increases. & These two together form the {\bf{electrochemical gradient}}. & & \tn % Row Count 26 (+ 10) % Row 4 \SetRowColor{LightBackground} 2) \seqsplit{Permeability} of the membrane. As \seqsplit{permeability} increases, the rate of diffusion increases. \textasciicircum{}The substance needs some base level of permeability\textasciicircum{} & Diffusion down a {\emph{concentration (chemical)}} gradient. High to low concentration. & & \tn % Row Count 39 (+ 13) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{1.2531 cm} x{2.0885 cm} p{0.4177 cm} p{0.4177 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{Diffusion Potential (cont)}} \tn % Row 5 \SetRowColor{LightBackground} 3) Surface area of the membrane. As surface are increases, the rate of diffusion increases. & Movement along an {\emph{electrical}} gradient & & \tn % Row Count 8 (+ 8) % Row 6 \SetRowColor{white} 4) Molecular weight of the substance. As the molecular weight of the substance increases, the rate of diffusion decreases. & Movement along an electrical gradient. The electrostatic force (voltage) caused by the separation of electrical charge. & & \tn % Row Count 19 (+ 11) % Row 7 \SetRowColor{LightBackground} 5) Distance\textasciitilde{}(thickness)\textasciitilde{} over which diffusion takes place. As distance increases, the rate of diffusion decreases. & Movement along an electro chemical gradient the combined force of {\bf{concentration (chemical)}} and {\bf{electrical}} gradients. & & \tn % Row Count 29 (+ 10) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Action Potential Terms}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Hyperpolarization: Change in membrane potential to more negative values than membrane potential} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Depolarization: Change in membrane polarization to more positive values than resting membrane potential.} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Repolarization: Return to resting membrane potential after depolarization.} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Action Potential: Brief all-or-nothing reversal in membrane potential (spike) lasting on the order of 1 millisecond. It is brought about by rapid changes in membrane permeability to Na\textasciicircum{}+\textasciicircum{} and K\textasciicircum{}+\textasciicircum{} ions.} \tn % Row Count 12 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Refractory Period}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Absolute}} refractory period - a brief period during a spike. A second spike cannot be generated. & **Relative refractory period - a breif period following a spike. Capable of opening in response to depolarization \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} Repolarization: Voltage gated Na\textasciicircum{}+\textasciicircum{} channel inactivation gate closes & Hyperpolarization: a higher stimulus is needed \tn % Row Count 10 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Membrane Potential}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Membrane potential is a separation of opposite charges across the plasma membrane.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Potential is measured in volts which is then converted into millivolts(mV).} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{If there are equal charges on both sides of the plasma membrane then there is no membrane potential.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Most of the fluid is electrically neutral but the separated charges form a layer along the plasma membrane.} \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The magnitude of potential increases as the separation of charges along the membrane increase.} \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Resting Membrane Potential (-70mV)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{1. K\textasciicircum{}+\textasciicircum{} high in ICF and Na\textasciicircum{}+\textasciicircum{} high in the ECF.} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{2. K\textasciicircum{}+\textasciicircum{} drives equilibrium potential for K\textasciicircum{}+\textasciicircum{} (E\textasciitilde{}K\textasciicircum{}+\textasciicircum{}\textasciitilde{}=-90mV)} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{3. Na\textasciicircum{}+\textasciicircum{} drives equilibrium potential for Na\textasciicircum{}+\textasciicircum{} (E\textasciitilde{}Na\textasciicircum{}+\textasciicircum{}\textasciitilde{}=+60mV)} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Resting membrane potential: MIX with K\textasciicircum{}+\textasciicircum{} and Na\textasciicircum{}+\textasciicircum{} but consider the membrane permeability}}} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The membrane is 20-30 times more permeable to K\textasciicircum{}+\textasciicircum{} than Na\textasciicircum{}+\textasciicircum{}.} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The large net diffusion of K\textasciicircum{}+\textasciicircum{} is slightly neutralized by the net diffusion of Na\textasciicircum{}+\textasciicircum{}.} \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Leak channels: Permit ions to diffuse down concentration gradients.} \tn % Row Count 13 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Na\textasciicircum{}+\textasciicircum{}/K\textasciicircum{}+\textasciicircum{} ATPase: Establishes and maintains concentration gradients. 3 Na\textasciicircum{}+\textasciicircum{} Out, 2 K\textasciicircum{}+\textasciicircum{} In and 1 ATP used.} \tn % Row Count 16 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Different Phases of Action Potential}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Rising}} Phase of the Action Potential & {\bf{Falling}} Phase of the Action Potential \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Voltage-gated Na\textasciicircum{}+\textasciicircum{} channel opens quickly (\textless{}0.5ms) in response to depolarization, allowing Na\textasciicircum{}+\textasciicircum{} to flow down its electrochemical gradient into the cell. & Voltage-gated K\textasciicircum{}+\textasciicircum{} channel opens slowly in response to depolarization allowing K\textasciicircum{}+\textasciicircum{} ions to flow out of the cell down their electrochemical gradient. \tn % Row Count 11 (+ 8) % Row 2 \SetRowColor{LightBackground} At the threshold (-50mV), Na\textasciicircum{}+\textasciicircum{} activation gate opens, and permeability of Na\textasciicircum{}+\textasciicircum{} rises. Na\textasciicircum{}+\textasciicircum{} enters the cell. & Na\textasciicircum{}+\textasciicircum{} inactivation gate closes. K\textasciicircum{}+\textasciicircum{} activation gate opens and permeability of K\textasciicircum{}+\textasciicircum{} rise. K\textasciicircum{}+\textasciicircum{} leaves the cell. At the resting potential, Na\textasciicircum{}+\textasciicircum{} activation gate closes and inactivation gate opens. K\textasciicircum{}+\textasciicircum{} ;eaves cell because the gate is still open. \tn % Row Count 24 (+ 13) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Refractory Period Image}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/davnav_1748389578_refractory.PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.55618 cm} x{1.51041 cm} x{1.51041 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Equilibrium Potential}} \tn % Row 0 \SetRowColor{LightBackground} How Equilibrium Potential is Established & Equilibrium potential for K\textasciicircum{}+\textasciicircum{} (E\textasciitilde{}K\textasciicircum{}+\textasciicircum{}\textasciitilde{}=-90mV) & Equilibrium Potential for Na\textasciicircum{}+\textasciicircum{} (E\textasciitilde{}Na\textasciicircum{}+\textasciicircum{}\textasciitilde{}=+60mV) \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} 1. Establishes and maintains \seqsplit{concentration} gradients for key ions (Na\textasciicircum{}+\textasciicircum{}, K\textasciicircum{}+\textasciicircum{}). & 1. K\textasciicircum{}+\textasciicircum{} tends to move out of the cell. & 1. Na\textasciicircum{}+\textasciicircum{} tends to move into the cell. \tn % Row Count 11 (+ 7) % Row 2 \SetRowColor{LightBackground} 2. Ions {\emph{diffuse}} through the membrane down their \seqsplit{concentration} gradients. & 2. Outside of the cell becomes more positive. & 2. Inside of the cell becomes more positive. \tn % Row Count 17 (+ 6) % Row 3 \SetRowColor{white} 3. Diffusion through the membrane results in charge separation, creating a membrane potential (electrical gradient). & 3. Electrical gradient tends to move K\textasciicircum{}+\textasciicircum{} into the cell. & 3. Electrical gradient tends to move Na\textasciicircum{}+\textasciicircum{} out of the cell. \tn % Row Count 26 (+ 9) % Row 4 \SetRowColor{LightBackground} 4. Net diffusion continues until the force exerted by electrical gradient exactly balances the force exerted by the \seqsplit{concentration} gradient. & 4. Electrical gradient \seqsplit{counterbalances} \seqsplit{concentration} gradient. & 4. Electrical gradient \seqsplit{counterbalances} \seqsplit{concentration} gradient. \tn % Row Count 37 (+ 11) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{1.55618 cm} x{1.51041 cm} x{1.51041 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Equilibrium Potential (cont)}} \tn % Row 5 \SetRowColor{LightBackground} 5. This potential that would exist at this equilibrium is "{\emph{equilibrium potential}}" & 5. No further net movement of K\textasciicircum{}+\textasciicircum{} occurs & 5. No further net movement of Na\textasciicircum{}+\textasciicircum{} occurs. \tn % Row Count 7 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Action Potential Propagation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Propagation - action potentials propagate when locally generated depolarizing current spreads to adjacent regions of membrane causing it to depolarize.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Once initiated, action potentials are conducted throughout a nerve fiber} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Contiguous conduction - porpagation of action potentials in unmyelinated fibers by spread of locally generated depolarizing current to adjacent regions of membrane, causing it to depolarize.} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The original active area returns to resting potential, and the new activate area induces an action potential to the next inactive area. The cycle repeats down the length of the axon.} \tn % Row Count 14 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Action Potential Image}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/davnav_1748389639_API.PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}