Cheatography

Nervous System NPB 101 Cheat Sheet by davnav via cheatography.com/213585/cs/46491/

Diffusion Potential		Diffusion Potential (cont)		Diffusion Potential (cont)	
The net movement of random collisions between molecules.	There are <i>two</i> <i>types</i> of diffusion	2) Permeability of the membrane. As permeability	Diffusion down a concentration (chemical)	5) Distance _{(thick-} Movement along an ness) over which diffusion takes gradient the	
Diffusion down a concentration gradient	Concen- tration(chemical) gradient. eg. O_2 , CO_2 , and fatty acids, Na ⁺ , K ⁺ ,	increases, the rate of diffusion increases. The substance needs some base level of permeability	gradient. High to low concentration.	place. As distance increases, the rate of diffusion decreases.	
Rate of Diffusion <i>Through a Membrane</i> is dependent on five	Ca^{2+} , CF	 Surface area of the membrane. As surface are increases, the rate of diffusion increases. 	Movement along an <i>electrical</i> gradient	Action Potential Terms	
	Electrical gradient. eg. Na ⁺ , K ⁺ , Ca ²⁺ ,			Hyperpolarization: Change in membrane potential to more negative values than membrane potential	
factors:CI°1) Magnitude of the concentration gradient.These two together form the electrochemical gradient increases, the rate of diffusion increases.	These two	4) Molecular weight of the substance. As the molecular weight of the substance increases, the rate of diffusion decreases.	Movement along an electrical gradient. The electrostatic force (voltage) caused by the separation of electrical charge.	Depolarization: Change in membrane polarization to more positive values than resting membrane potential.	
				Repolarization: Return to resting membrane potential after depolarization.	
				Action Potential: Brief all-or-nothing reversal in membrane potential (spike) lasting on the order of 1 millisecond. It is	

Refractory Period

Absolute	**Relative refractory
refractory period -	period - a breif period
a brief period	following a spike.
during a spike. A	Capable of opening in
second spike	response to depolariz-
cannot be	ation
generated.	
Repolarization:	Hyperpolarization: a
Voltage gated Na^+	higher stimulus is
channel inacti-	needed
vation gate closes	
· · · · · · · · · · · · · · · · · · ·	

brought about by rapid changes in

membrane permeability to $\mathrm{Na}^{\mathrm{+}}$ and $\mathrm{K}^{\mathrm{+}}$ ions.

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours!

https://apollopad.com

By davnav

cheatography.com/davnav/

Published 27th May, 2025. Last updated 28th May, 2025. Page 1 of 3.

Cheatography

Nervous System NPB 101 Cheat Sheet by davnav via cheatography.com/213585/cs/46491/

Membrane Potential

Membrane potential is a separation of opposite charges across the plasma membrane.

Potential is measured in volts which is then converted into millivolts(mV).

If there are equal charges on both sides of the plasma membrane then there is no membrane potential.

Most of the fluid is electrically neutral but the separated charges form a layer along the plasma membrane.

The magnitude of potential increases as the separation of charges along the membrane increase.

Resting Membrane Potential (-70mV)

1. K⁺ high in ICF and Na⁺ high in the ECF.

2. K⁺ drives equilibrium potential for K⁺ (EK+=-90mV)

3. Na⁺ drives equilibrium potential for Na⁺ (E_{Na}+=+60mV)

Resting membrane potential: MIX with K⁺ and Na⁺ but consider the membrane permeability

The membrane is 20-30 times more permeable to K⁺ than Na⁺.

The large net diffusion of K⁺ is slightly neutralized by the net diffusion of Na⁺.

Leak channels: Permit ions to diffuse down concentration gradients.

Na⁺/K⁺ ATPase: Establishes and maintains concentration gradients. 3 Na⁺ Out, 2 K⁺ In and 1 ATP used.

By davnav

cheatography.com/davnav/

Rising Phase of the Action Potential

Falling Phase of the Action Potential

Different Phases of Action Potential (cont)

Voltage-gated K⁺ Voltage-gated Na⁺ channel opens quickly (<0.5ms) in response to depolarization, allowing Na⁺ to flow down its electrochemical gradient into the cell. At the threshold (-50mV), Na⁺ activation gate opens, and permeability of Na⁺ rises. Na⁺ enters the cell.

 channel opens slowly in response to depolarization allowing K⁺ ions to flow out of the cell down their electrochemical gradient. Na⁺ inactivation gate closes. K⁺ activation gate opens and permeability of K⁺ rise. K⁺ leaves the cell. At the resting potential, Na⁺ activation gate closes and inactivation gate opens. K⁺ ;eaves cell because the gate is still open. 	vollage-galed K
 ation allowing K⁺ ions to flow out of the cell down their electrochemical gradient. Na⁺ inactivation gate closes. K⁺ activation gate opens and permeability of K⁺ rise. K⁺ leaves the cell. At the resting potential, Na⁺ activation gate closes and inactivation gate opens. K⁺ ;eaves cell because the 	channel opens slowly in
 flow out of the cell down their electrochemical gradient. Na⁺ inactivation gate closes. K⁺ activation gate opens and permeability of K⁺ rise. K⁺ leaves the cell. At the resting potential, Na⁺ activation gate closes and inacti- vation gate opens. K⁺ ;eaves cell because the 	response to depolariz-
their electrochemical gradient. Na ⁺ inactivation gate closes. K ⁺ activation gate opens and permeability of K ⁺ rise. K ⁺ leaves the cell. At the resting potential, Na ⁺ activation gate closes and inacti- vation gate opens. K ⁺ ;eaves cell because the	ation allowing K^+ ions to
gradient. Na ⁺ inactivation gate closes. K ⁺ activation gate opens and permeability of K ⁺ rise. K ⁺ leaves the cell. At the resting potential, Na ⁺ activation gate closes and inacti- vation gate opens. K ⁺ ;eaves cell because the	flow out of the cell down
Na ⁺ inactivation gate closes. K ⁺ activation gate opens and permeability of K ⁺ rise. K ⁺ leaves the cell. At the resting potential, Na ⁺ activation gate closes and inacti- vation gate opens. K ⁺ ;eaves cell because the	their electrochemical
closes. K^+ activation gate opens and permeability of K^+ rise. K^+ leaves the cell. At the resting potential, Na ⁺ activation gate closes and inacti- vation gate opens. K^+ ;eaves cell because the	gradient.
closes. K^+ activation gate opens and permeability of K^+ rise. K^+ leaves the cell. At the resting potential, Na ⁺ activation gate closes and inacti- vation gate opens. K^+ ;eaves cell because the	
closes. K^+ activation gate opens and permeability of K^+ rise. K^+ leaves the cell. At the resting potential, Na ⁺ activation gate closes and inacti- vation gate opens. K^+ ;eaves cell because the	
closes. K^+ activation gate opens and permeability of K^+ rise. K^+ leaves the cell. At the resting potential, Na ⁺ activation gate closes and inacti- vation gate opens. K^+ ;eaves cell because the	
closes. K^+ activation gate opens and permeability of K^+ rise. K^+ leaves the cell. At the resting potential, Na ⁺ activation gate closes and inacti- vation gate opens. K^+ ;eaves cell because the	
opens and permeability of K ⁺ rise. K ⁺ leaves the cell. At the resting potential, Na ⁺ activation gate closes and inacti- vation gate opens. K ⁺ ;eaves cell because the	Na ⁺ inactivation gate
of K ⁺ rise. K ⁺ leaves the cell. At the resting potential, Na ⁺ activation gate closes and inacti- vation gate opens. K ⁺ ;eaves cell because the	closes. \textbf{K}^{+} activation gate
cell. At the resting potential, Na ⁺ activation gate closes and inacti- vation gate opens. K ⁺ ;eaves cell because the	opens and permeability
potential, Na ⁺ activation gate closes and inacti- vation gate opens. K ⁺ ;eaves cell because the	of K^+ rise. K^+ leaves the
gate closes and inacti- vation gate opens. K ⁺ ;eaves cell because the	cell. At the resting
vation gate opens. K ⁺ ;eaves cell because the	potential, Na ⁺ activation
;eaves cell because the	gate closes and inacti-
,	vation gate opens. K ⁺
gate is still open.	;eaves cell because the
	gate is still open.

Refractory Period Image rryperpolanzation, a n refractory period Membrane potential (mV) +30 0 4 5 6 2 3 7

Equilibrium Potential				
How Equili- brium Potential is Established	Equili- brium potential for K ⁺ (E _K ⁺ =- 90mV)	Equilibrium Potential for Na ⁺ (E _{Na} +=+60mV)		
1. Establ- ishes and maintains concentration gradients for key ions (Na ⁺ , K ⁺).	1. K ⁺ tends to move out of the cell.	1. Na ⁺ tends to move into the cell.		
2. lons <i>diffuse</i> through the membrane down their concentration gradients.	2. Outside of the cell becomes more positive.	2. Inside of the cell becomes more positive.		
3. Diffusion through the membrane results in charge separation, creating a membrane potential (electrical gradient).	3. Electrical gradient tends to move K ⁺ into the cell.	3. Electrical gradient tends to move Na ⁺ out of the cell.		

Published 27th May, 2025. Last updated 28th May, 2025. Page 2 of 3.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

Nervous System NPB 101 Cheat Sheet by davnav via cheatography.com/213585/cs/46491/

Equilibrium Potential (cont)

4. Net diffusion	4.	4.
continues until	Electrical	Electrical
the force exerted	gradient	gradient
by electrical	counte-	counte-
gradient exactly	rbalances	rbalances
balances the	concen-	concen-
force exerted by	tration	tration
the concentration	gradient.	gradient.
gradient.		
5. This potential	5. No	5. No
that would exist	further net	further net
at this equilibrium	movement	movement
is " <i>equilibrium</i>	of K ⁺	of Na ⁺
potential"	occurs	occurs.

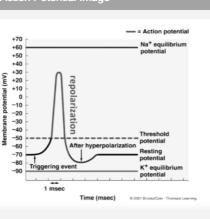
Action Potential Propagation

Propagation - action potentials propagate when locally generated depolarizing current spreads to adjacent regions of membrane causing it to depolarize.

Once initiated, action potentials are conducted throughout a nerve fiber

Contiguous conduction - porpagation of action potentials in unmyelinated fibers by spread of locally generated depolarizing current to adjacent regions of membrane, causing it to depolarize.

The original active area returns to resting potential, and the new activate area induces an action potential to the next inactive area. The cycle repeats down the length of the axon.


By **davnav**

cheatography.com/davnav/

Published 27th May, 2025. Last updated 28th May, 2025. Page 3 of 3.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

Action Potential Image

