Cheatography

Nervous System NPB 101 Cheat Sheet by davnav via cheatography.com/213585/cs/46491/

Diffusion Potential		Diffusion Potential (cont)		Diffusion Potential (cont)	
The net movement of random collisions between molecules.	There are <i>two</i> <i>types</i> of diffusion	2) Permeability of the membrane. As permeability	Diffusion down a concentration (chemical)	5) Distance _{(thick-} ness) over which diffusion takes	Movement along an electro chemical gradient the
Diffusion down a concentration gradient	Concen- tration (chemical) gradient. eg. O ₂ , CO ₂ , and fatty	increases, the rate of diffusion increases. The substance needs some base level of permeability	gradient. High to low concentration.	place. As distance increases, the rate of diffusion decreases.	combined force of concentration (chemical) and electrical gradients.
	acids, Na ⁺ , K ⁺ , Ca ²⁺ , Cl ⁻	 Surface area of the membrane. As surface are increases, the rate of diffusion increases. 	Movement along an <i>electrical</i> gradient Movement along an electrical gradient. The electrostatic force (voltage) caused by the separation of electrical charge.	Action Potential Terms	
Rate of Diffusion <i>Through a Membrane</i> is dependent on five	rough a Membrane is gradient. eg.			Hyperpolarization: 0 potential to more ne membrane potentia	0
factors:CI1) Magnitude of the concentration gradient.These tw together electrochAs concentrationelectroch	Cl ⁻ These two together form the	4) Molecular weight of the substance. As the molecular weight of		Depolarization: Cha polarization to more resting membrane p	positive values than
	electrochemical gradient.	the substance increases, the rate of diffusion decreases.		Repolarization: Return potential after depol	urn to resting membrane larization.
				Action Potential: Bri reversal in membra lasting on the order	0

Absolute	**Relative refractory
refractory period -	period - a breif period
a brief period	following a spike.
during a spike. A	Capable of opening in
second spike	response to depolariz-
cannot be	ation
generated.	
Repolarization:	Hyperpolarization: a
Voltage gated Na ⁺	higher stimulus is
channel inacti-	needed
vation gate closes	

brought about by rapid changes in

membrane permeability to $\mathrm{Na}^{\mathrm{+}}$ and $\mathrm{K}^{\mathrm{+}}$ ions.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords!

http://crosswordcheats.com

By davnav

cheatography.com/davnav/

Published 27th May, 2025. Last updated 28th May, 2025. Page 1 of 3.

Cheatography

Nervous System NPB 101 Cheat Sheet by davnav via cheatography.com/213585/cs/46491/

Membrane Potential

Membrane potential is a separation of opposite charges across the plasma membrane.

Potential is measured in volts which is then converted into millivolts(mV).

If there are equal charges on both sides of the plasma membrane then there is no membrane potential.

Most of the fluid is electrically neutral but the separated charges form a layer along the plasma membrane.

The magnitude of potential increases as the separation of charges along the membrane increase.

Resting Membrane Potential (-70mV)

1. K⁺ high in ICF and Na⁺ high in the ECF.

2. K⁺ drives equilibrium potential for K⁺ (EK+=-90mV)

3. Na⁺ drives equilibrium potential for Na⁺ (E_{Na}+=+60mV)

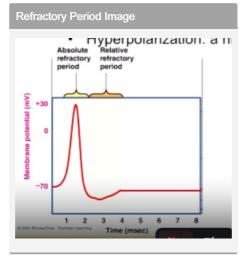
Resting membrane potential: MIX with K⁺ and Na⁺ but consider the membrane permeability

The membrane is 20-30 times more permeable to K⁺ than Na⁺.

The large net diffusion of K⁺ is slightly neutralized by the net diffusion of Na⁺.

Leak channels: Permit ions to diffuse down concentration gradients.

Na⁺/K⁺ ATPase: Establishes and maintains concentration gradients. 3 Na⁺ Out, 2 K⁺ In and 1 ATP used.


Rising Phase of the Action Potential

Falling Phase of the Action Potential

By davnav cheatography.com/davnav/

Different Phases of Action Potential (cont)

Voltage-gated Voltage-gated K⁺ Na⁺ channel channel opens slowly in opens quickly response to depolariz-(<0.5ms) in ation allowing K⁺ ions to response to flow out of the cell down depolarization, their electrochemical allowing Na⁺ to gradient. flow down its electrochemical gradient into the cell. Na⁺ inactivation gate At the threshold (-50mV), Na⁺ closes. K⁺ activation gate activation gate opens and permeability opens, and of K⁺ rise. K⁺ leaves the cell. At the resting permeability of Na⁺ rises. Na⁺ potential, Na⁺ activation enters the cell. gate closes and inactivation gate opens. K⁺ ;eaves cell because the gate is still open.

Equilibrium Potential				
How Equili- brium Potential is Established	Equili- brium potential for K ⁺ (E _K +=- 90mV)	Equilibrium Potential for Na ⁺ (E _{Na} +=+60mV)		
1. Establ- ishes and maintains concentration gradients for key ions (Na ⁺ , K ⁺).	1. K ⁺ tends to move out of the cell.	1. Na ⁺ tends to move into the cell.		
2. lons <i>diffuse</i> through the membrane down their concentration gradients.	2. Outside of the cell becomes more positive.	2. Inside of the cell becomes more positive.		
3. Diffusion through the membrane results in charge separation, creating a membrane potential (electrical gradient).	3. Electrical gradient tends to move K ⁺ into the cell.	3. Electrical gradient tends to move Na ⁺ out of the cell.		

Published 27th May, 2025. Last updated 28th May, 2025. Page 2 of 3.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

Nervous System NPB 101 Cheat Sheet by davnav via cheatography.com/213585/cs/46491/

Equilibrium Potenti	al (cont)	
4. Net diffusion	4.	4.
continues until	Electrical	Electrical
the force exerted	gradient	gradient
by electrical	counte-	counte-
gradient exactly	rbalances	rbalances
balances the	concen-	concen-
force exerted by	tration	tration
the concentration	gradient.	gradient.
gradient.		
5. This potential	5. No	5. No
that would exist	further net	further net
at this equilibrium	movement	movement
is " <i>equilibrium</i>	of K^+	of Na ⁺
potential"	occurs	occurs.

Action Potential Propagation

Propagation - action potentials propagate when locally generated depolarizing current spreads to adjacent regions of membrane causing it to depolarize.

Once initiated, action potentials are conducted throughout a nerve fiber

Contiguous conduction - porpagation of action potentials in unmyelinated fibers by spread of locally generated depolarizing current to adjacent regions of membrane, causing it to depolarize.

The original active area returns to resting potential, and the new activate area induces an action potential to the next inactive area. The cycle repeats down the length of the axon.

By davnav

cheatography.com/davnav/

Published 27th May, 2025. Last updated 28th May, 2025. Page 3 of 3.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords!

http://crosswordcheats.com

Action Potential Image	