Cheatography

Operating Systems Cheat Sheet by davinaa018 via cheatography.com/197551/cs/41655/

Memory Management

within the

page

* Virtual	Multi-level Page
address is	Tables are used
translated to	to reduce
a physical	memory
address	overhead in page
using a	tables. Instead of
page table	a singel-level
	structure, a
	multi-level page
	table uses
	multiple levels of
	tables to
	represent the
	virtual-to-p-
	hysical address
	mapping
* A linear	* Super Pages
page table	are larger-than
is a one-di-	normal memory
mensional	pages that can
array where	be used to
each entry	increase TLB
corresponds	efficiency and
to a page.	reduce overhead
The virtual	associated with
address is	managing
divided into	multiple smaller
a page	pages
number and	
an offset	

Memory Management (cont)

* Translation Lookaside Buffer (TLB) is a hardware cache that store recent translations of virtual addresses to physical addresses, reducing the time needed for address translation

Security & Cryptography

* Public Key Encryption -

* Crypto-

involves a pair of keys: a public key for encryption and a private key for decryption. Message decrypted with the public key can only be decrypted by the corresponding private key

* Crypto-	* Transport
graphy -	Layer Security
ensures data	(TLS) -
privacy by	Provides
encrypting	secure
sensitive	communication
information,	over a network.
data integrity	It operates
by providing	above the
mechanisms	transport layer
to detect	(usually TCP),
tampering,	encrypting data
and authentic-	to ensure
ation by	confidentiality
verifying the	and using
identity of	certificates for
commun-	authentication
ication parties	

* Swapping	* Page Fault
involves	occurs when a
moving entire	process tries to
processes	access a page
between	not currently in
main memory	physical
and	memory. the
secondary	OS, through the
storage to	page faul
free up space	handler, brings
in RAM. It	the required
helps	page into
manage	memory from
memory	disk, updates
constraints by	the page table,
temporarily	and allows the
storing less	process to
frequently	continue
used	
processes on	

disk

Process Management Process Management (cont)

age Fault	* Malloc()	* Mm
curs when a	- a	or de
ocess tries to	function	mem
cess a page	for	for m
currently in	dynamic	files o
ysical	memory	share
mory. the	alloca-	regio
, through the	tion,	create
ge faul	typically	mem
ndler, brings	used for	betwe
required	creating	by ma
ge into	variable	same
mory from	sized	virtua
k, updates	blocks of	space
page table,	memory	
d allows the	on the	
ocess to	heap	
ntinue		
	Memory Co	onsiste
	Systems	

ap() maps files vices into ory, often used emory-mapped or creating ed memory ns. It can e shared eory regions een processes apping the e file into their al address es

icy and File

* Sequential Consistency - ensures that the execution of operations in a parallel program appears as if they are executed in some sequential order. it provides a clear, understandable model for concurrent program execution

* Sequential Consistency in Modern Processors: - Achieving strict sequential consistency can lead to performance degradation in modern processors. Processors often use Optimization like out-of-order execution and catching that may violate strict sequential consistency to improve speed

By davinaa018

Not published yet. Last updated 11th December, 2023. Page 1 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/davinaa018/

Cheatography

Operating Systems Cheat Sheet by davinaa018 via cheatography.com/197551/cs/41655/

* TCP (Trans-

Protocol) - a

connection-o-

protocol that

ordered, and

error-checked

mission

Control

riented

ensures

reliable,

delivery

* Remote

Procedure

enables

execute

a remote

they were

local. It

involves

marshalling

parameters,

making the

remote call, and unmarshalling results.

Call (RPC) -

programs to

procedures on

machine as if

Memory Consisten	Networking (cont)			
Systems (cont)		* UPD (User	*	
* Hard Links -	* Soft Links -	Datagram	r	
Create additional	Create a	Protocol) - a	(
directory entries	separate file	connectio-	F	
pointing to the	containing	nless, lightw-	C	
same inode,	the path to	eight protocol	r	
effectively	the target file	that does not	k	
creating multiple		guarantee	e	
names for the		delivery or	r	
same file		order of	C	
* File System -	* Free	packets	e	
are organized on	Command -		C	
disk with partit-	Displays	* Data	*	
ions, file	information	Marshalling -	F	
allocation tables	about	Involves	(
(FAT), or inode	system	converting	e	
tables	memory	data from one	F	
	usage	representation	e	
* Page Cache-	* Buffering -	to another for	k	
stores frequently	Involves	commun-	8	
accessed disk	temporarily	ication	r	
pages in	storing data	between	t	
memory,	in a buffer	systems with	l	
reducing the	before	different	i	
need for	writing it to	architectures	r	
repeated disk	disk,	or byte orders.	r	
access.	optimizing	it ensures	r	
	disk I/O	compatibility in	r	
		network	â	
Networking		commun-	ł	
		ication		

I IN I	러	1.1	11	@)('ki	0

* IPv4	* IPv6 Addresses -
Addresses	128-bit numerical
- 32-bit	labels designed to
numerical	address the
labels	limitation of IPv4
assigned	and accommodate
to devices	the growing
on a	number of
network	connected devices

By davinaa018

cheatography.com/davinaa018/

Not published yet. Last updated 11th December, 2023. Page 2 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com