
PHP-FIG PSR Standards Cheat Sheet
by Dave Child (DaveChild) via cheatography.com/1/cs/1743/

Useful LinksUseful Links

Official Site http:/​/ww​w.p​hp-​fig.org

Accepted StandardsAccepted Standards

PSR-0 Autolo​ading Standard

http:/​/ww​w.p​hp-​fig.or​g/p​sr/​psr-0/

PSR-1 Basic Coding Standard

http:/​/ww​w.p​hp-​fig.or​g/p​sr/​psr-1/

PSR-2 Coding Style Guide

http:/​/ww​w.p​hp-​fig.or​g/p​sr/​psr-2/

PSR-3 Logger Interface

http:/​/ww​w.p​hp-​fig.or​g/p​sr/​psr-3/

PSR-4 Improved Autolo​ading

http:/​/ww​w.p​hp-​fig.or​g/p​sr/​psr-4/

PSR-0 - OverviewPSR-0 - Overview

A fully-​qua​lified namespace and class must
have the following structure \<V​endor
Name>​\(<N​ame​spa​ce>​\)*​<Class Name>

Each namespace must have a top-level
namespace ("Vendor Name").

Each namespace can have as many sub-
na​mes​paces as it wishes.

Each namespace separator is converted to
a DIRECT​ORY​_SE​PARATOR when loading
from the file system.

Each _ character in the CLASS NAME is
converted to a DIRECT​ORY​_SE​PAR​ATOR.
The _ character has no special meaning in
the namespace.

The fully-​qua​lified namespace and class is
suffixed with .php when loading from the file
system.

Alphabetic characters in vendor names,
namesp​aces, and class names may be of
any combin​ation of lower case and upper
case.

PSR-1 - OverviewPSR-1 - Overview

Files MUST use only <?php and <?= tags.

Files MUST use only UTF-8 without BOM
for PHP code.

Files SHOULD either declare symbols
(classes, functions, constants, etc.) or
cause side-e​ffects (e.g. generate output,
change .ini settings, etc.) but SHOULD NOT
do both.

Namespaces and classes MUST follow
PSR-0.

Class names MUST be declared in Studly​‐
Caps.

Class constants MUST be declared in all
upper case with underscore separa​tors.

Method names MUST be declared in
camelCase.

PSR-2 - OverviewPSR-2 - Overview

Code MUST follow PSR-1.

Code MUST use 4 spaces for indenting, not
tabs.

There MUST NOT be a hard limit on line
length; the soft limit MUST be 120 charac​‐
ters; lines SHOULD be 80 characters or
less.

There MUST be one blank line after the
namespace declar​ation, and there MUST
be one blank line after the block of use
declar​ations.

Opening braces for classes MUST go on
the next line, and closing braces MUST go
on the next line after the body.

Opening braces for methods MUST go on
the next line, and closing braces MUST go
on the next line after the body.

Visibility MUST be declared on all
properties and methods; abstract and final
MUST be declared before the visibi​lity;
static MUST be declared after the visibi​lity.

Control structure keywords MUST have one
space after them; method and function calls
MUST NOT.

PSR-2 - Overview (cont)PSR-2 - Overview (cont)

Opening braces for control structures
MUST go on the same line, and closing
braces MUST go on the next line after the
body.

Opening parent​heses for control structures
MUST NOT have a space after them, and
closing parent​heses for control structures
MUST NOT have a space before.

PSR-2 - GeneralPSR-2 - General

Code MUST follow all rules outlined in
PSR-1.

All PHP files MUST use the Unix LF
(linefeed) line ending.

All PHP files MUST end with a single blank
line.

The closing ?> tag MUST be omitted from
files containing only PHP.

There MUST NOT be a hard limit on line
length.

The soft limit on line length MUST be 120
charac​ters; automated style checkers
MUST warn but MUST NOT error at the soft
limit.

Lines SHOULD NOT be longer than 80
charac​ters; lines longer than that SHOULD
be split into multiple subsequent lines of no
more than 80 characters each.

There MUST NOT be trailing whitespace at
the end of non-blank lines.

Blank lines MAY be added to improve
readab​ility and to indicate related blocks of
code.

There MUST NOT be more than one
statement per line.

Code MUST use an indent of 4 spaces, and
MUST NOT use tabs for indenting.

PHP keywords MUST be in lower case.

The PHP constants true, false, and null
MUST be in lower case.

By Dave ChildDave Child (DaveChild)
cheatography.com/davechild/
aloneonahill.com

Published 21st February, 2014.
Last updated 12th May, 2016.
Page 1 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/davechild/
http://www.cheatography.com/davechild/cheat-sheets/php-fig-psr-standards
http://www.php-fig.org
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-4/
http://www.cheatography.com/davechild/
https://aloneonahill.com
https://readable.com

PHP-FIG PSR Standards Cheat Sheet
by Dave Child (DaveChild) via cheatography.com/1/cs/1743/

PSR-2 - Namespace and Use Declar​ationsPSR-2 - Namespace and Use Declar​ations

When present, there MUST be one blank
line after the namespace declar​ation.

When present, all use declar​ations MUST
go after the namespace declar​ation.

There MUST be one use keyword per
declar​ation.

There MUST be one blank line after the use
block.

PSR-2 - Classes, Proper​ties, and MethodsPSR-2 - Classes, Proper​ties, and Methods

The extends and implements keywords
MUST be declared on the same line as the
class name.

The opening brace for the class MUST go
on its own line; the closing brace for the
class MUST go on the next line after the
body.

Lists of implements MAY be split across
multiple lines, where each subsequent line
is indented once. When doing so, the first
item in the list MUST be on the next line,
and there MUST be only one interface per
line.

Visibility MUST be declared on all proper​‐
ties.

The var keyword MUST NOT be used to
declare a property.

There MUST NOT be more than one
property declared per statement.

Property names SHOULD NOT be prefixed
with a single underscore to indicate
protected or private visibi​lity.

Visibility MUST be declared on all methods.

Method names SHOULD NOT be prefixed
with a single underscore to indicate
protected or private visibi​lity.

Method names MUST NOT be declared
with a space after the method name.

The opening brace of a method MUST go
on its own line, and the closing brace MUST
go on the next line following the body.

PSR-2 - Classes, Proper​ties, and MethodsPSR-2 - Classes, Proper​ties, and Methods
(cont)(cont)

There MUST NOT be a space after the
opening parent​hesis of a method, and there
MUST NOT be a space before the closing
parent​hesis.

In the argument list, there MUST NOT be a
space before each comma, and there
MUST be one space after each comma.

Method arguments with default values
MUST go at the end of the argument list.

Argument lists MAY be split across multiple
lines, where each subsequent line is
indented once. When doing so, the first
item in the list MUST be on the next line,
and there MUST be only one argument per
line.

When the argument list is split across
multiple lines, the closing parent​hesis and
opening brace MUST be placed together on
their own line with one space between
them.

When present, the abstract and final declar​‐
ations MUST precede the visibility declar​‐
ation.

When present, the static declar​ation MUST
come after the visibility declar​ation.

When making a method or function call,
there MUST NOT be a space between the
method or function name and the opening
parent​hesis, there MUST NOT be a space
after the opening parent​hesis, and there
MUST NOT be a space before the closing
parent​hesis.

In the argument list, there MUST NOT be a
space before each comma, and there
MUST be one space after each comma.

PSR-2 - Control StructuresPSR-2 - Control Structures

There MUST be one space after the control
structure keyword

There MUST NOT be a space after the
opening parent​hesis

There MUST NOT be a space before the
closing parent​hesis

There MUST be one space between the
closing parent​hesis and the opening brace

The structure body MUST be indented once

The closing brace MUST be on the next line
after the body

The body of each structure MUST be
enclosed by braces.

The keyword elseif SHOULD be used
instead of else if.

The case statement MUST be indented
once from switch, and the break keyword
(or other termin​ating keyword) MUST be
indented at the same level as the case
body.

There MUST be a comment such as // no
break when fall-t​hrough is intent​ional in a
non-empty case body.

PSR-2 - ClosuresPSR-2 - Closures

Closures MUST be declared with a space
after the function keyword, and a space
before and after the use keyword.

The opening brace MUST go on the same
line, and the closing brace MUST go on the
next line following the body.

There MUST NOT be a space after the
opening parent​hesis of the argument list or
variable list, and there MUST NOT be a
space before the closing parent​hesis of the
argument list or variable list.

By Dave ChildDave Child (DaveChild)
cheatography.com/davechild/
aloneonahill.com

Published 21st February, 2014.
Last updated 12th May, 2016.
Page 2 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/davechild/
http://www.cheatography.com/davechild/cheat-sheets/php-fig-psr-standards
http://www.cheatography.com/davechild/
https://aloneonahill.com
https://readable.com

PHP-FIG PSR Standards Cheat Sheet
by Dave Child (DaveChild) via cheatography.com/1/cs/1743/

PSR-2 - Closures (cont)PSR-2 - Closures (cont)

In the argument list and variable list, there
MUST NOT be a space before each
comma, and there MUST be one space after
each comma.

Closure arguments with default values
MUST go at the end of the argument list.

Argument lists and variable lists MAY be
split across multiple lines, where each
subsequent line is indented once. When
doing so, the first item in the list MUST be
on the next line, and there MUST be only
one argument or variable per line.

When the ending list (whether or arguments
or variables) is split across multiple lines,
the closing parent​hesis and opening brace
MUST be placed together on their own line
with one space between them.

PSR-3 - Log Levels (RFC 5424)PSR-3 - Log Levels (RFC 5424)

debug error

info critical

notice alert

warning emergency

PSR-3 - BasicsPSR-3 - Basics

The Logger​Int​erface exposes eight methods
matching log level names (see Log Levels
block)

A ninth method, log, accepts a log level as
first argument. Calling this method with one
of the log level constants MUST have the
same result as calling the level-​spe​cific
method.

Calling the log method with a level not
defined by this specif​ication MUST throw a
Psr\Lo​g\I​nva​lid​Arg​ume​ntE​xce​ption if the
implem​ent​ation does not know about the
level.

Users SHOULD NOT use a custom level
without knowing for sure the current implem​‐
ent​ation supports it.

PSR-3 - MessagePSR-3 - Message

Every method accepts a string as the
message, or an object with a __toSt​ring()
method.

The message MAY contain placeh​olders
which implem​entors MAY replace with
values from the context array.

Placeh​older names MUST correspond to
keys in the context array.

Placeh​older names MUST be delimited with
a single opening brace { and a single
closing brace }. There MUST NOT be any
whitespace between the delimiters and the
placeh​older name.

Placeh​older names SHOULD be composed
only of the characters A-Z, a-z, 0-9,
underscore _, and period .. The use of other
characters is reserved for future modifi​‐
cations of the placeh​olders specif​ica​tion.

Implem​entors MAY use placeh​olders to
implement various escaping strategies and
translate logs for display. Users SHOULD
NOT pre-escape placeh​older values since
they can not know in which context the data
will be displayed.

PSR-3 - ContextPSR-3 - Context

Every method accepts an array as context
data. This is meant to hold any extraneous
inform​ation that does not fit well in a string.
The array can contain anything.

Implem​entors MUST ensure they treat
context data with as much lenience as
possible.

A given value in the context MUST NOT
throw an exception nor raise any php error,
warning or notice.

If an Exception object is passed in the
context data, it MUST be in the 'excep​tion'
key.

PSR-3 - Context (cont)PSR-3 - Context (cont)

Logging exceptions is a common pattern
and this allows implem​entors to extract a
stack trace from the exception when the log
backend supports it.

Implem​entors MUST still verify that the
'excep​tion' key is actually an Exception
before using it as such, as it MAY contain
anything.

PSR-3 - Helper Classes and InterfacesPSR-3 - Helper Classes and Interfaces

The Psr\Lo​g\A​bst​rac​tLogger class lets you
implement the Logger​Int​erface very easily
by extending it and implem​enting the
generic log method. The other eight
methods are forwarding the message and
context to it.

The Psr\Lo​g\L​ogg​erTrait only requires you
to implement the generic log method. Note
that since traits can not implement interf​‐
aces, in this case you still have to
implement Logger​Int​erface.

The Psr\Lo​g\N​ull​Logger is provided
together with the interface. It MAY be used
by users of the interface to provide a fall-
back "​black hole" implem​ent​ation if no
logger is given to them. However condit​‐
ional logging may be a better approach if
context data creation is expensive.

The Psr\Lo​g\L​ogg​erA​war​eIn​terface only
contains a setLog​ger​(Lo​gge​rIn​terface
$logger) method and can be used by
frameworks to auto-wire arbitrary instances
with a logger.

The Psr\Lo​g\L​ogg​erA​war​eTrait trait can be
used to implement the equivalent interface
easily in any class. It gives you access to
$this-​>lo​gger.

The Psr\Lo​g\L​ogLevel class holds constants
for the eight log levels.

By Dave ChildDave Child (DaveChild)
cheatography.com/davechild/
aloneonahill.com

Published 21st February, 2014.
Last updated 12th May, 2016.
Page 3 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/davechild/
http://www.cheatography.com/davechild/cheat-sheets/php-fig-psr-standards
http://www.cheatography.com/davechild/
https://aloneonahill.com
https://readable.com

PHP-FIG PSR Standards Cheat Sheet
by Dave Child (DaveChild) via cheatography.com/1/cs/1743/

PSR-4 Specif​icationPSR-4 Specif​ication

A fully qualified class name has the
following form: \<N​ame​spa​ceN​ame​>(​\<Su​‐
bNa​mes​pac​eNa​mes​>)*​\<C​las​sNa​me>

The fully qualified class name MUST have a
top-level namespace name, also known as
a "​vendor namesp​ace​".

The fully qualified class name MAY have
one or more sub-na​mespace names.

The fully qualified class name MUST have a
termin​ating class name.

Unders​cores have no special meaning in
any portion of the fully qualified class name.

Alphabetic characters in the fully qualified
class name MAY be any combin​ation of
lower case and upper case.

All class names MUST be referenced in a
case-s​ens​itive fashion.

A contiguous series of one or more leading
namespace and sub-na​mespace names,
not including the leading namespace
separator, in the fully qualified class name
(a "​nam​espace prefix​") corres​ponds to at
least one "base direct​ory​".

The contiguous sub-na​mespace names
after the "​nam​espace prefix​" correspond to
a subdir​ectory within a "base direct​ory​", in
which the namespace separators represent
directory separa​tors. The subdir​ectory
name MUST match the case of the sub-na​‐
mespace names.

The termin​ating class name corres​ponds to
a file name ending in .php. The file name
MUST match the case of the termin​ating
class name.

Autoloader implem​ent​ations MUST NOT
throw except​ions, MUST NOT raise errors
of any level, and SHOULD NOT return a
value.

By Dave ChildDave Child (DaveChild)
cheatography.com/davechild/
aloneonahill.com

Published 21st February, 2014.
Last updated 12th May, 2016.
Page 4 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/davechild/
http://www.cheatography.com/davechild/cheat-sheets/php-fig-psr-standards
http://www.cheatography.com/davechild/
https://aloneonahill.com
https://readable.com

	PHP-FIG PSR Standards Cheat Sheet - Page 1
	Useful Links
	PSR-1 - Overview
	Accepted Standards
	PSR-2 - General
	PSR-0 - Overview
	PSR-2 - Overview

	PHP-FIG PSR Standards Cheat Sheet - Page 2
	PSR-2 - Namespace and Use Declar­ations
	PSR-2 - Control Structures
	PSR-2 - Classes, Proper­ties, and Methods
	PSR-2 - Closures

	PHP-FIG PSR Standards Cheat Sheet - Page 3
	PSR-3 - Message
	PSR-3 - Helper Classes and Interfaces
	PSR-3 - Log Levels (RFC 5424)
	PSR-3 - Basics
	PSR-3 - Context

	PHP-FIG PSR Standards Cheat Sheet - Page 4
	PSR-4 Specif­ication

