
Reg Ex CheatSheet Cheat Sheet
by datamansam via cheatography.com/139410/cs/29846/

RegexRegex

(*) indicates that
the preceding
character can
occur 0 or more
times.

meo*w mew,
meow,
meooow,
and
meoooo‐
oooooooow

? - character can
appear either 0 or
1 time

humou?
r

humour
humor

. and it can match
any single
character (letter,
number, symbol
or whitespace) in
a piece of text

......... any 9-char‐
acter text

[] will match any
of the characters
included within
the brackets

con[sc]e
n[sc]us

consensus,
concensus,
consencus,
and
concencus

{} contains the
exact quantity

roa{3}r roaaar

{}n. the quantity
range of
characters to be
matched

roa{3,6}r roaaar,
roaaaar,
roaaaaar,
or
roaaaaaar

|, allows for the
matching of either
of two subexpres‐
sions.

baboon‐
s|g‐
orillas

will match
the text
baboons
as well as
the text
gorillas.

Regex (cont)Regex (cont)

Anchors (hat
^ and dollar
sign $) are
used in
regular
expressions
to match text
at the start
and end of a
string,
respectively.

^Monkeys:
my mortal
enemy$

will
completely
match the
text
Monkeys: my
mortal
enemy but
not match
Spider
Monkeys: my
mortal
enemy or
Monkeys: my
mortal
enemy in the
wild

[letter-letter]
or [n-n]

a range of
characters
that can
be
matched

[A-Z]. :
match any
uppercase
letter [a-z]. :
match any
lowercase
letter [0-9]. :
match any
digit [A-Za-z]
: match any
uppercase or
lowercase
letter

Shorthand
character
classes
simplify
writing regular
expressions

\w
represents
the regex
range [A-
Za-z0-9_],
\d
represents
[0-9],

\W
represents
[

0-9]
matching
any
character not
included by
\d

Regex (cont)Regex (cont)

Negated
character set

[^cdh]are will match
the m in
mare.

+ ndicates that
the preceding
character can
occur 1 or more
times

meo+w will match
meow,
meooow,
and
meoooo‐
ooo‐
ooooow,
but not
match
mew

Text PreprocessingText Preprocessing

Noise
removal

import re
result =
re.sub(r'[\.\?‐
\!\,\:\;\"]', '',
text)

Removes
Punctu‐
ation

Tokenization
is the text
prepro‐
cessing task
of breaking
up text into
smaller
components
of text

from nltk.t‐
okenize
import
word_t‐
okenize text =
"This is a text
to tokenize"
tokenized =
word_tokeniz‐
e(text)

print(tok‐
enized) #
["This", "‐
is", "a", "‐
text", "to",
"tokeni‐
ze"]

In natural
language
processing,
normalization
encompasses
many text
prepro‐
cessing tasks
including

stemming,
lemmatiza‐
tion,

upper or
lowerc‐
asing, and
stopwords
removal.

By datamansamdatamansam

cheatography.com/datamansam/

Published 30th November, 2021.
Last updated 23rd November, 2021.
Page 1 of 2.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

A-Za-z0-9_]

matching any

character not

included by \w,

\D represents

[

http://www.cheatography.com/
http://www.cheatography.com/datamansam/
http://www.cheatography.com/datamansam/cheat-sheets/reg-ex-cheatsheet
http://www.cheatography.com/datamansam/
https://apollopad.com

Reg Ex CheatSheet Cheat Sheet
by datamansam via cheatography.com/139410/cs/29846/

Text Preprocessing (cont)Text Preprocessing (cont)

Stemming In
natural
language
processing,
stemming is
the text
preprocessing
normalization
task
concerned
with bluntly
removing
word affixes
(prefixes and
suffixes).

from nltk.stem
import Porter‐
Stemmer
tokenized =
["So", "many", "‐
squids", "are", "‐
jumping"]
stemmer =
PorterStemmer()
stemmed =
[stemmer.stem(t‐
oken) for token
in tokenized]

['So',
'mani',
'squid',
'are',
'jump']

Lemmat‐
ization In
natural
language
processing,
lemmatization
is the text
preprocessing
normalization
task
concerned
with bringing
words down
to their root
forms.

from nltk.stem
import WordNe‐
tLemmatizer
tokenized =
["So", "many", "‐
squids", "are", "‐
jumping"]
lemmatizer =
WordNetLemma‐
tizer()
lemmatized =
[lemmatizer.lem‐
matize(token) for
token in
tokenized]

['So',
'many',
'squid',
'be',
'jump']

Text Preprocessing (cont)Text Preprocessing (cont)

stopword
removal is
the process
of removing
words from a
string that
don’t provide
any inform‐
ation about
the tone of a
statement.

from nltk.c‐
orpus
import
stopwords
define set
of English
stopwords
stop_words
= set(st‐
opwords.w‐
ords('eng‐
lish'))

remove
stopwords
from tokens
in dataset
statement‐
_no_stop =
[word for
word in
word_tokens
if word not in
stop_words]

parser.
chunk.Reg‐
expParser

Uses a set
of regular
expression
patterns to
specify the
behavior of
the parser

{<DT|JJ>} #
chunk
determiners
and
adjectives

Token = Smaller Component of Text
Stem = Remove prefix and suffix
Lemmatization = Bring down to root
Stopword = Remove meaningless

Lists and StringsLists and Strings

z = ’Natural
Language
Processing’

z.repl‐
ace(’ ’,
’\n’)

’Natural\nLa‐
nguage\nProc‐
essing’

 list(z) Split text into
character
tokens

 set(z) Unique tokens

x = [’Natural’,
’Language’,
’Toolkit’]

x.inse‐
rt(0,
’Python’)

[’Language’,
’Natural’,
’Python’,
’Toolkit’]

By datamansamdatamansam

cheatography.com/datamansam/

Published 30th November, 2021.
Last updated 23rd November, 2021.
Page 2 of 2.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/datamansam/
http://www.cheatography.com/datamansam/cheat-sheets/reg-ex-cheatsheet
http://www.cheatography.com/datamansam/
https://apollopad.com

	Reg Ex CheatSheet Cheat Sheet - Page 1
	Regex
	Text Preprocessing

	Reg Ex CheatSheet Cheat Sheet - Page 2
	Lists and Strings

