Cheatography

Single Py Files Python

Containing components you
have defined
(functions,
variables, classes,
etc.) Runnable

code (scripts)

Can be: Executed (python
my_module.py)
Imported from a

shell or another file
IMPORTING

When you import a import math

module, a new name, x = math.pow(2, 3)
'bound’ to the module,
is created in the

current scope:

from math import
pow
X = pow(2, 3)

We can also importa from math import *

specific function from x = pow(2, 3)
the module, and so

now we don't need to

specify the module

name

We could also from math import *

achieve this by X = pow(2, 3)
importing all objects

in the module, but isk

creating namespace

conflicts:

We can import a import pandas as

module under an pd import seaborn
alias to bind it to a as sns

name of our choice:

All runnable code in a module is executed

at import.

By datamansam

via

Modules (cont)

f you want it to be executed only when you
run the file, use the following:

if __name__is a special built-in
__name__ variable which will automa-
="_m- tically be setto"__main__" if
ain__": the source file is being
print("This executed as the main

will be run program, rather than being
only if the imported.

file is

execut ed")

When importing, Python looks for the
module with the same name in:

The built-in - The directories defined in the
modules sys.path list:
The current working directory
The PYTHONPATH list
The default Python directory
You can import sys print(sys.path)
access this sys.path.append("/path/to/ad-
list at d")
runtime
and
append
new paths
to it
manually:

Code to treat Jupyter notebooks as

modules

import io, 0s, sys, types

import nbformat

from IPython import get_ipython

from IPython.core.interactiveshell import
InteractiveShell

def find_notebook(fullname, path=None):
""find a notebook, given its fully qualified
name and an optional path

This turns "foo.bar" into "foo/bar.ipynb"

Code to treat Jupyter notebooks as

modules (cont)

and tries turning "Foo_Bar" into "Foo Bar" if
Foo_Bar

does not exist.

name = fullname.rsplit(".", 1)[-1]

if not path:

path = ["]

for d in path:

nb_path = os.path.join(d, name + ".ipynb")
if os.path.isfile(nb_path):

return nb_path

let import Notebook_Name find "Notebook
Name.ipynb"

nb_path = nb_path.replace("_", " ")

if os.path.isfile(nb_path):

return nb_path

class NotebookLoader(object):
"""Module Loader for IPython Notebooks"""
def __init_ (self, path=None):

self.shell = InteractiveShell.instance()
self.path = path

def load_module(self, fullname):

import a notebook as a module"™

path = find_notebook(fullname, self.path)
print ("importing notebook from %s" % path)
load the notebook object

nb = nbformat.read(path, as_version=4)
create the module and add it to sys.mo-
dules

if name in sys.modules:

return sys.modules[name]

mod = types.ModuleType(fullname)
mod.__file__ = path

mod.__loader__ = self

mod.__dict_ ['get_ipython'] = get_ipython
sys.modules[fullname] = mod

Published 30th November, 2021.
Last updated 30th November, 2021.
Page 1 of 2.

Sponsored by Readable.com
Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/datamansam/
http://www.cheatography.com/datamansam/cheat-sheets/python-modules-and-packages
http://www.cheatography.com/datamansam/
https://readable.com

Cheatography

Code to treat Jupyter notebooks as

modules (cont)

extra work to ensure that magics that
would affect the user_ns

actually affect the notebook module's ns
save_user_ns = self.shell.user_ns
self.shell.user_ns = mod.__dict__

try:

for cell in nb.cells:

if cell.cell_type == 'code":

transform the input to executable Python
code = self.shell.input_transformer_mana-
ger.transform_cell(cell.source)

run the code in themodule

exec(code, mod.__dict_)

finally:

self.shell.user_ns = save_user_ns

return mod

class NotebookFinder(object):

"""Module finder that locates IPython
Notebooks™"

def __init__(self):

self.loaders = {}

def find_module(self, fullname, path=None):
nb_path = find_notebook(fullname, path)

if not nb_path:

return

key = path

if path:

lists aren't hashable

key = os.path.sep.join(path)

if key not in self.loaders:

self.loaders[key] = NotebookLoader(path)
return self.loaders[key]
sys.meta_path.append(NotebookFinder())

By datamansam

cheatography.com/datamansam/

Python Modules And Packages

by datamansam via cheatography.com/139410/cs/29867/

Importing ipynb as modules

from NameOfModule from math

import NameOfFunction import pow2

Packages

Packages are directories that contain
modules and/or other packages. This can
be a good way to group modules in a
hierarchical directory structure.
__init__.pyina Can be used to import
package will be nested modules at a
executed at higher level of
import. hierarchy

When working with packages, it is recomm-
ended to assume code will be run from the
top level and use absolute imports from

there

Add an extra To install run: pip install
level of hierarchy my_package/ (the / is
and a setup.py important)

file

Once installed, you can import your module
from Python, or run an executable in the

shell if you've defined an entrypoint.

Published 30th November, 2021.
Last updated 30th November, 2021.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability!

https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/datamansam/
http://www.cheatography.com/datamansam/cheat-sheets/python-modules-and-packages
http://www.cheatography.com/datamansam/
https://readable.com

	Python Modules And Packages - Page 1
	Modules
	Code to treat Jupyter notebooks as modules

	Python Modules And Packages - Page 2
	Importing ipynb as modules
	Packages

