Cheatography

Introduction to Apache Spark

An open-source, distributed processing

system used for big data workloads.

Utilizes in-memory caching, and optimized

query execution for fast analytic queries

against data of any size.

Provides:

Development APIs. Batch processing,

interactive queries, real-time analytics,

machine learning, and graph processing

Apache Spark vs. Apache Hadoop

Hadoop MapReduce is a programming

model for processing big data sets with a

parallel, distributed algorithm.

With each step,
MapReduce reads data

from the cluster, performs
operations, and writes the

results back to HDFS.
Because each step
requires a disk read, and

write, MapReduce jobs are
slower due to the latency of

disk /0.

Because
each step
requires a
disk read,
and write,
MapReduce
jobs are
slower due to
the latency of
disk 1/0.

Spark was created to address the limita-

tions to MapReduce

Spark does processing in-

memory, reducing the
number of steps in a job,

and by reusing data across
multiple parallel operations.

With Spark,
only one-step
is needed
where data is
read into
memory,
operations
performed,
and the
results written
back

By datamansam

cheatography.com/datamansam/

Apache Spark
by datamansam via cheatography.com/139410/cs/30084/

DDL

Data Definition Language

Resilient Distributed Dataset (RDD) is the
fundamental data structure of Spark

immutable (and therefore fault-tolerant)

Distributed collections of objects of any

type.

Each Dataset in
Spark RDD is
divided into
logical partitions
across the
cluster

RDD features

Lazy Evaluation

In-Memory

Computation

Fault Tolerance

Immutability

Partitioning

thus can be operated in
parallel, on different
nodes of the cluster.

Transformation do not
compute the results as
and when stated

Data is kept in RAM
(random access
memory) instead of the
slower disk drives

Tracks data lineage
information to allow for
rebuilding lost data
automatically on failure
Immutability simply
rules out lots of
potential problems due
to various updates from

varying threads at once.

Having Immutable data
is safer to share across
processes

Each node in a spark
cluster contains one or
more partitions.

Two ways to apply operations on RDDs

Published 17th January, 2022.
Last updated 28th February, 2022.

Page 1 of 4.

DDL (cont)

1, Transformation
— These are the
operations, which
are applied on a
RDD to create a
new RDD. Filter,
groupBy and map
are the examples
of transform-
ations.

2, Action — These
are the operations
that are applied
on RDD, which
instructs Spark to
perform comput-
ation and send
the result back to
the driver.

Create Dataframees

via CSV

Narrow Transform-
ations: In this type, all
the elements which
are required to
compute the records in
a single partition live in
that single partition.

Wide Transformations:
Here, all elements
required to compute
the records in that
single partition may
live in many of the
partitions of the parent
RDD. These use
groupbyKey() and
reducebyKey().

count(), collect(),
take(n), top(), count
value(), reduce(),
fold(), aggregate(),
foreach().

df=spark.read.option("-
header",True) \ .csv("/-
tmp/resources/simple--
zipcodes.csv")

If you have a header
with column names on
your input file, you
need to explicitly
specify True

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish

Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/datamansam/
http://www.cheatography.com/datamansam/cheat-sheets/apache-spark
http://www.cheatography.com/datamansam/
https://apollopad.com

Cheatography

df = spark.read.csv("path1,pat-
h2,path3") ; df = spark.read.csv("-
Folder path")

Using the read.csv() method you
can also read multiple csv files,
just pass all file names by
separating comma as a path

Using nullValues option you can
specify the string in a CSV to
consider as null. For example, if
you want to consider a date
column with a value "1900-01-01"
set null on DataFrame.

Parition Used to partition the large dataset
(DataFrame) into smaller files
based on one or multiple columns

while writing to disk

df.write.option("header", True) \
.partitionBy("state") \ .mode("ove-
rwrite") \ .csv("/tmp/zipcodes-st-
ate")

Apache Spark
by datamansam via cheatography.com/139410/cs/30084/

DDL (cont) DDL (cont)

PySpark splits the records based on the
partition column and stores each partition
data into a sub-directory., If we have a total
of 6 different states hence, it creates 6
directories

df.write.option("header",True) \ .partitionBy-

("state","city") \ .mode("overwrite") \ .csv("/-
tmp/zipcodes-state")

t creates a folder hierarchy for each
partition; we have mentioned the first
partition as state followed by city hence, it
creates a city folder inside the state folder
(one folder for each city in a state).

By datamansam

cheatography.com/datamansam/

from pyspark.sql import
functions as F
Select Columns
df.sel ect ("fi rst Nam e").s -
how ()
df.sel ect ("fi rst Nam e","1 -
ast Nam e") \

.show ()
split multiple array column
data into rows
df2 = df.sel ect (df.na me, -
exp lod e(d f.s ubj ect andID))

Show all entries where age >24

Published 17th January, 2022.
Last updated 28th February, 2022.
Page 2 of 4.

Queries (cont)

> df.select(df['age'] > 24).show()
Show name and 0 or 1 depending on age
> or < than 30
df.select("Name",

F.when(df.age > 30, 1)

.otherwise(0)) \

.show()
Show firstName if in the given options
dffdf.firstName.isin("Jane","Boris")].collect()
Show firstName, and lastName if
lastName is Smith.

df.select("firstName",
df.lastName.like("Smith"))

.show()

Like also excepts wildcard matches.
df.select("firstName",
df.lastName.like("%Sm"))

.show()

Show firstName, and TRUE if
df.lastName \ lastName starts with Sm
Startswith - Endswith
df.select("firstName

.startswith("Sm")) \

.show()

Show last names ending in th
df.select(df.lastName.endswith("th"))\
.show()

Return substrings of firstName
Substring
df.select(df.firstName.substr(1, 3) \
.alias("name")) \

.collect()

Between

Show values where age is between 22
and 24

df.select(df.age.between(22, 24)) \
.show()

Show all entries in firstName and age + 1

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/datamansam/
http://www.cheatography.com/datamansam/cheat-sheets/apache-spark
http://www.cheatography.com/datamansam/
https://apollopad.com

Cheatography

Apache Spark
by datamansam via cheatography.com/139410/cs/30084/

> df.select(df["firstName"],df["age"]+ 1),
.show()

DML

Dealing with nulls

df= To drop how: ‘any’ or ‘all’. If

df.na.d null ‘any’, drop a row if it

ro- values we contains any nulls. If

p(how use the ‘all’, drop a row only

='any', na if all its values are

thresh function null

=2) with the

drop()
attribute.

thresh: default None
If specified, drop
rows that have less
than thresh non-null
values. This
overwrites the how
parameter.
subset: optional
optional list of
column names to
consider.

Tofill df.na.fill(50)

nulls

union() method of the DataFrame is used to
merge two DataFrame’s of the same struct-
ure/schema.

By datamansam

cheatography.com/datamansam/

unionDF = df.union(df2) returns the new
DataFrame
with all rows
from two
Dataframes
regardless of

duplicate data.

use the use the distinct() use the
function to return just distinct()
one record when function to

duplicate exists.() return just one

function to return just record when
one record when duplicate

duplicate exists. exists.

Creating a Session

import pyspark # importing the

module

importing the SparkS ession
module

from pyspar k.sgl import
SparkS ession

creating a session

session = SparkS ess ion.bu -
ild er.a pp Nam e(' First App')
.getOr Cre ate()

calling the session variable

session

Creating delta tables

Define the input and output

formats and paths and the table

name.
read f ormat = 'delta'
write format = 'delta'

load path = '/data bri cks -da -
tas ets /le arn ing -sp ark -
v2 /pe opl e/p eop le- -

10m.delta’

Published 17th January, 2022.
Last updated 28th February, 2022.
Page 3 of 4.

Creating delta tables (cont)

> save_path = '/tmp/delta/people-10m'
table_name = 'default.people10m’
Load the data from its source.
people = spark \
.read \
format(read_format) \
.load(load_path)
Write the data to its target.
people.write \
format(write_format) \
.save(save_path)
Create the table.
spark.sql("CREATE TABLE " + table_name
+" USING DELTA LOCATION " +
save_path +"")
session

Data preprocessing

To select one or multiple
columns the select () function
works

datafr ame.se lec t(c olu mn_ -
name) # selecting one column
datafr ame.se lec t(c olu mn 1,
column 2, .., column N)

selecting many columns
datafr ame.wi thC olumn ()

To add a column the datafr -
ame.wi thC olumn () function
takes two parameters

New column name to add

Existing column name to use for
(not necessary if the

new column has nothing to do
with the existing column)

adding columns in dataframe

data = data.w ith Col umn ('A -
ge aft er 3 y', data[' -

Age ']1+3)

to change data type

You would also need cast () along

with withCo lumn () .

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/datamansam/
http://www.cheatography.com/datamansam/cheat-sheets/apache-spark
http://www.cheatography.com/datamansam/
https://apollopad.com

Apache Spark
by datamansam via cheatography.com/139410/cs/30084/

Cheatography

Data preprocessing (cont)

> The below statement changes the
datatype from String
to Integer for the salary column.
df.withColumn("salary",col("salary").cast("I-
nteger")).show()
Change a value
Pass an existing column name as a first
argument
and a column as the value to be assigned
as a second argument
df.withColumn("salary",col("salary")*100).s-
how()
Drop
df.drop("salary") \
.show()
withColumnRenamed()
rename an existing column
df.withColumnRenamed("gender","sex") \
.show(truncate=False)

Adding columns - df.withColumn('newCol’,
newVal)

Changing data types - df.withColumn("n-
ewCol",col("OldCol").cast("NewD-
T")).show()

Changing Values - df.withColumn(‘oldcol’,
col("oldcol") operation)

Dropping = withColumnRenamed

Renaming = withColumnRenamed

Sorting and Grouping

df.sort("col", Default sorting technique
ascending = used by order by is ASC
false)

df.groupby("col").agg() / df.groupby("a-
ge").counr()

Spark SQL

spark.sql(select * from tablename)

By datamansam Published 17th January, 2022. Sponsored by ApolloPad.com
Last updated 28th February, 2022. Everyone has a novel in them. Finish
Page 4 of 4. Yours!

https://apollopad.com
cheatography.com/datamansam/

http://www.cheatography.com/
http://www.cheatography.com/datamansam/
http://www.cheatography.com/datamansam/cheat-sheets/apache-spark
http://www.cheatography.com/datamansam/
https://apollopad.com

	Apache Spark - Page 1
	Introd­uction to Apache Spark
	DDL

	Apache Spark - Page 2
	Queries

	Apache Spark - Page 3
	DML
	Creating a Session
	Data prepro­cessing
	Creating delta tables

	Apache Spark - Page 4
	Sorting and Grouping
	Spark SQL

