
Apache Spark
by datamansam via cheatography.com/139410/cs/30084/

Introduction to Apache SparkIntroduction to Apache Spark

An open-source, distributed processing
system used for big data workloads.

Utilizes in-memory caching, and optimized
query execution for fast analytic queries
against data of any size.

Provides:

Development APIs. Batch processing,
interactive queries, real-time analytics,
machine learning, and graph processing

Apache Spark vs. Apache Hadoop

Hadoop MapReduce is a programming
model for processing big data sets with a
parallel, distributed algorithm.

With each step,
MapReduce reads data
from the cluster, performs
operations, and writes the
results back to HDFS.
Because each step
requires a disk read, and
write, MapReduce jobs are
slower due to the latency of
disk I/O.

Because
each step
requires a
disk read,
and write,
MapReduce
jobs are
slower due to
the latency of
disk I/O.

Spark was created to address the limita‐
tions to MapReduce

Spark does processing in-
memory, reducing the
number of steps in a job,
and by reusing data across
multiple parallel operations.

With Spark,
only one-step
is needed
where data is
read into
memory,
operations
performed,
and the
results written
back

DDLDDL

Data Definition Language

Resilient Distributed Dataset (RDD) is the
fundamental data structure of Spark

immutable (and therefore fault-tolerant)
Distributed collections of objects of any
type.

Each Dataset in
Spark RDD is
divided into
logical partitions
across the
cluster

thus can be operated in
parallel, on different
nodes of the cluster.

RDD features

Lazy Evaluation Transformation do not
compute the results as
and when stated

In-Memory
Computation

Data is kept in RAM
(random access
memory) instead of the
slower disk drives

Fault Tolerance Tracks data lineage
information to allow for
rebuilding lost data
automatically on failure

Immutability Immutability simply
rules out lots of
potential problems due
to various updates from
varying threads at once.

 Having Immutable data
is safer to share across
processes

Partitioning Each node in a spark
cluster contains one or
more partitions.

Two ways to apply operations on RDDs

DDL (cont)DDL (cont)

1, Transformation
− These are the
operations, which
are applied on a
RDD to create a
new RDD. Filter,
groupBy and map
are the examples
of transform‐
ations.

Narrow Transform‐
ations: In this type, all
the elements which
are required to
compute the records in
a single partition live in
that single partition.

 Wide Transformations:
Here, all elements
required to compute
the records in that
single partition may
live in many of the
partitions of the parent
RDD. These use
groupbyKey() and
reducebyKey().

2, Action − These
are the operations
that are applied
on RDD, which
instructs Spark to
perform comput‐
ation and send
the result back to
the driver.

count(), collect(),
take(n), top(), count
value(), reduce(),
fold(), aggregate(),
foreach().

Create Dataframees

via CSV df=spark.read.option("‐
header",True) \ .csv("/‐
tmp/resources/simple-‐
zipcodes.csv")

 If you have a header
with column names on
your input file, you
need to explicitly
specify True

By datamansamdatamansam

cheatography.com/datamansam/

Published 17th January, 2022.
Last updated 28th February, 2022.
Page 1 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/datamansam/
http://www.cheatography.com/datamansam/cheat-sheets/apache-spark
http://www.cheatography.com/datamansam/
https://readable.com

Apache Spark
by datamansam via cheatography.com/139410/cs/30084/

DDL (cont)DDL (cont)

 df = spark.read.csv("path1,pat‐
h2,path3") ; df = spark.read.csv("‐
Folder path")

 Using the read.csv() method you
can also read multiple csv files,
just pass all file names by
separating comma as a path

 Using nullValues option you can
specify the string in a CSV to
consider as null. For example, if
you want to consider a date
column with a value "1900-01-01"
set null on DataFrame.

Parition Used to partition the large dataset
(DataFrame) into smaller files
based on one or multiple columns
while writing to disk

 df.write.option("header",True) \
.partitionBy("state") \ .mode("ove‐
rwrite") \ .csv("/tmp/zipcodes-st‐
ate")

DDL (cont)DDL (cont)

 PySpark splits the records based on the
partition column and stores each partition
data into a sub-directory., If we have a total
of 6 different states hence, it creates 6
directories

 df.write.option("header",True) \ .partitionBy‐
("state","city") \ .mode("overwrite") \ .csv("/‐
tmp/zipcodes-state")

 t creates a folder hierarchy for each
partition; we have mentioned the first
partition as state followed by city hence, it
creates a city folder inside the state folder
(one folder for each city in a state).

QueriesQueries

from pyspark.sql import
functions as F
Select Columns
df.select("firstName").s‐
how()
df.select("firstName","l‐
astName") \
 .show()
split multiple array column
data into rows
df2 = df.select(df.name,‐
explode(df.subjectandID))
Show all entries where age >24

Queries (cont)Queries (cont)

> df.select(df['age'] > 24).show()
Show name and 0 or 1 depending on age
> or < than 30
df.select("Name",
 F.when(df.age > 30, 1)
 .otherwise(0)) \
 .show()
Show firstName if in the given options
df[df.firstName.isin("Jane","Boris")].collect()
Show firstName, and lastName if
lastName is Smith.
df.select("firstName",
 df.lastName.like("Smith"))
 .show()
Like also excepts wildcard matches.
df.select("firstName",
 df.lastName.like("%Sm"))
 .show()
Show firstName, and TRUE if
 df.lastName \ lastName starts with Sm
Startswith - Endswith
df.select("firstName
 .startswith("Sm")) \
 .show()
Show last names ending in th
df.select(df.lastName.endswith("th"))\
 .show()
Return substrings of firstName
 Substring
df.select(df.firstName.substr(1, 3) \
 .alias("name")) \
 .collect()
 Between
Show values where age is between 22
and 24
df.select(df.age.between(22, 24)) \
 .show()
Show all entries in firstName and age + 1

By datamansamdatamansam

cheatography.com/datamansam/

Published 17th January, 2022.
Last updated 28th February, 2022.
Page 2 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/datamansam/
http://www.cheatography.com/datamansam/cheat-sheets/apache-spark
http://www.cheatography.com/datamansam/
https://readable.com

Apache Spark
by datamansam via cheatography.com/139410/cs/30084/

Queries (cont)Queries (cont)

> df.select(df["firstName"],df["age"]+ 1),
.show()

DMLDML

Dealing with nulls

df=
df.na.d
ro‐
p(how
= 'any',
thresh
= 2)

To drop
null
values we
use the
na
function
with the
drop()
attribute.

how: ‘any’ or ‘all’. If
‘any’, drop a row if it
contains any nulls. If
‘all’, drop a row only
if all its values are
null

 thresh: default None
If specified, drop
rows that have less
than thresh non-null
values. This
overwrites the how
parameter.

 subset: optional
optional list of
column names to
consider.

To fill
nulls

df.na.fill(50)

union() method of the DataFrame is used to
merge two DataFrame’s of the same struct‐
ure/schema.

DML (cont)DML (cont)

 unionDF = df.union(df2) returns the new
DataFrame
with all rows
from two
Dataframes
regardless of
duplicate data.

 use the use the distinct()
function to return just
one record when
duplicate exists.()
function to return just
one record when
duplicate exists.

use the
distinct()
function to
return just one
record when
duplicate
exists.

Creating a SessionCreating a Session

import pyspark # importing the
module

 # importing the SparkSession
module
from pyspark.sql import
SparkSession
 # creating a session
session = SparkSession.bu‐
ilder.appName('First App')
.getOrCreate()
 # calling the session variable
session

Creating delta tablesCreating delta tables

Define the input and output
formats and paths and the table
name.
read_format = 'delta'
write_format = 'delta'
load_path = '/databricks-da‐
tasets/learning-spark-
v2/people/people-‐
10m.delta'

Creating delta tables (cont)Creating delta tables (cont)

> save_path = '/tmp/delta/people-10m'
table_name = 'default.people10m'
Load the data from its source.
people = spark \
 .read \
 .format(read_format) \
 .load(load_path)
Write the data to its target.
people.write \
 .format(write_format) \
 .save(save_path)
Create the table.
spark.sql("CREATE TABLE " + table_name
+ " USING DELTA LOCATION '" +
save_path + "'")
session

Data preprocessingData preprocessing

To select one or multiple
columns the select() function
works
dataframe.select(column_‐
name) # selecting one column
dataframe.select(column_1,
column_2, .., column_N)
selecting many columns
dataframe.withColumn()
To add a column the datafr‐
ame.withColumn() function
takes two parameters
New column name to add
Existing column name to use for
(not necessary if the
new column has nothing to do
with the existing column)
adding columns in dataframe
data = data.withColumn('A‐
ge_after_3_y', data['‐
Age']+3)
to change data type
You would also need cast() along
with withColumn().

By datamansamdatamansam

cheatography.com/datamansam/

Published 17th January, 2022.
Last updated 28th February, 2022.
Page 3 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/datamansam/
http://www.cheatography.com/datamansam/cheat-sheets/apache-spark
http://www.cheatography.com/datamansam/
https://readable.com

Apache Spark
by datamansam via cheatography.com/139410/cs/30084/

Data preprocessing (cont)Data preprocessing (cont)

> The below statement changes the
datatype from String
 to Integer for the salary column.
df.withColumn("salary",col("salary").cast("I‐
nteger")).show()
Change a value
Pass an existing column name as a first
argument
and a column as the value to be assigned
as a second argument
df.withColumn("salary",col("salary")*100).s‐
how()
Drop
df.drop("salary") \
 .show()
withColumnRenamed()
rename an existing column
df.withColumnRenamed("gender","sex") \
 .show(truncate=False)

Adding columns - df.withColumn('newCol',
newVal)
Changing data types - df.withColumn("n‐
ewCol",col("OldCol").cast("NewD‐
T")).show()
Changing Values - df.withColumn('oldcol',
col("oldcol") operation)

Dropping = withColumnRenamed

Renaming = withColumnRenamed

Sorting and GroupingSorting and Grouping

df.sort("col",
ascending =
false)

Default sorting technique
used by order by is ASC

df.groupby("col").agg() / df.groupby("a‐
ge").counr()

Spark SQLSpark SQL

spark.sql(select * from tablename)

By datamansamdatamansam

cheatography.com/datamansam/

Published 17th January, 2022.
Last updated 28th February, 2022.
Page 4 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/datamansam/
http://www.cheatography.com/datamansam/cheat-sheets/apache-spark
http://www.cheatography.com/datamansam/
https://readable.com

	Apache Spark - Page 1
	Introduction to Apache Spark
	DDL

	Apache Spark - Page 2
	Queries

	Apache Spark - Page 3
	DML
	Creating a Session
	Data preprocessing
	Creating delta tables

	Apache Spark - Page 4
	Sorting and Grouping
	Spark SQL

