
Bash Scripting Language Cheat Sheet Cheat Sheet
by danilobanjac via cheatography.com/50162/cs/13858/

Commands Line CommandsCommands Line Commands

clear Clears the screeen.

vim filena‐
me.sh

Creates a .sh file.

sh filena‐
me.sh

Execute Bash Script.

./filename.sh Other way of executing bash script.

ls -l See all file permissions inside a folder.

chmod +x
filename.sh

This will add execute permission to the file.

ls --help This will open all available commands.

ls --help |
grep "\-U"

This will grab more information about "-U"
command.

touch
wood.txt

This will create a file.

echo "here is
something
use it" >
wood.txt

This will write to the file that we first created.

cat wood.txt This will get us the output of the file.

cat {testfile‐
01,testfile02}
> test00

This will take as many files as we want and store
the content of those file in one file in this case "tes‐
t00".

echo "here is
something
new" >
wood.txt

This will replace the whole content of the wood.txt
file with this new content, if we want to add to file we
need to use the command from below.

echo "here is
comething
new" >>
wood.txt

Double >> will add to file.

: > wood.txt This will empty the whole file, remeber ":" that says
do nothing.

rm wood.txt Will remove the file completely.

Commands Line Commands (cont)Commands Line Commands (cont)

touch
test1 test2
test3 test4

for example if we create a hundreds of file with similar
name how we could delete them all or select them all?
(Solution below).

rm test* ("*" astrix sign will mark everything that begins with test
and delete it.

Vim CommandsVim Commands

Press "a" In order to start editing the file.

Press "esc" In order to quit editing the file.

Write ":" To allow you to save or quit or write to file.

Write ":wg" To write those changes and quit with saving.

Write ":wg!" To force this action.

Write ":q!" To quit without saving.

Part One (Variables and Parameters)Part One (Variables and Parameters)

ECHOING VARIABLES:
- var=10
echo var (This will echo "var")
echo $var (This will echo the actual value, this
is why we are using dollar sign "$" before
variable. So that program knows that we want a
value from the variable)
UNSET:
- var=10
unset var
echo $var ("unset" will actually reassign the
value of "var" to null)
ASIGN VALUE TO THE VARIABLE THROUGH USER:
- echo "type in some value"
read var2 (This will ask user for input same like
"prompt" in javascript and store this value to
variable)
echo $var2
PROPERTIES OF VARIABLES:
- var="T r a l a l a lalalal l"
echo $var (This will output the string but we will
miss some spaces, this means that ot all of our
spaces will be printed that is why we are using
"")
var="T r a l a l a lalalal l"

By danilobanjacdanilobanjac

cheatography.com/danilobanjac/

Not published yet.
Last updated 17th December, 2017.
Page 1 of 5.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/danilobanjac/
http://www.cheatography.com/danilobanjac/cheat-sheets/bash-scripting-language-cheat-sheet
http://www.cheatography.com/danilobanjac/
https://apollopad.com

Bash Scripting Language Cheat Sheet Cheat Sheet
by danilobanjac via cheatography.com/50162/cs/13858/

Part One (Variables and Parameters) (cont)Part One (Variables and Parameters) (cont)

> echo "$var" (When we use "" to wrap our variable with as well the
"$" dollar sign then all of our spaces will be outputed. This is
recommended way of doing "echo" in bash)
DEFINE NULL VARIABLE:
- var= (This will define variable with a value of "null")
DECLARING VARIABEL ON SAME LINE:
- var1=11 var2=22 var3=33
echo "$var1 $var2 $var3" (Same like in javascript)
ASSIGNING, REASSIGNING AND UNSETTING THE VALUE:
- var=
echo "$var"
var=9
echo "$var"
var=10
echo "$var"
unset var
echo "$var"
ASSIGN VALUE FROM BASH COMMAND TO VARIABLE:
- hi=$(ls -la) (This is the way of doing it)
 echo "$hi" (Will print value of "hi")
ADDING TO A VARIABLE OR DOING ARITHMETIC OPERATIONS
ON VARIABLES:
- var=
let "var ++"
echo "$var" (This will output 1)
let "var += 10"
echo "$var" (This will output 10)

REPLACING VALUES IN NUMBER:
- num=1100
var=${num/10/B}
echo "$var" (This will echo "1B0")
ENVIRONMENTAL VARIABLES:
 - #!/bin/bash
 MIN=10 (Minimum passed arguments in order to execute the
script)
 if [-n "$1"]; then echo "1st one is $1"; fi ("$1" first argument
that is being passed to script and "-n" check if argument exists.
Returning either "true" or "false")
 if [-n "$2"]; then echo "2st one is $2"; fi
 if [-n "$3"]; then echo "3rd one is $3"; fi
 if [-n "$4"]; then echo "4th one is $4"; fi
 if [-n "$5"]; then echo "5th one is $5"; fi
 if [-n "$6"]; then echo "6th one is $6"; fi

Part One (Variables and Parameters) (cont)Part One (Variables and Parameters) (cont)

> if [-n "$7"]; then echo "7th one is $7"; fi
 if [-n "$8"]; then echo "8th one is $8"; fi
 if [-n "$9"]; then echo "9th one is $9"; fi
 if [-n "${10}"]; then echo "10th one is ${10}"; fi
 echo "List of arguments: "$"" ("$" this will take all the
arguments that are being passed to script)
 echo "Name of Script: \""$0"\"" ("$0" is used to grab the name
of the file)
 if [$# -lt "$MIN"]; then echo "Not enought arguments, need "‐
$MIN" to run!"; fi (This check "$#" number of all arguments being
passed to script and compare it to our defined variable.)
 - sh filename.sh 1 2 3 4 5 6 7 8 9 10 (Passing arguments to our
script and printing them)

Part Two (Return Values)Part Two (Return Values)

RETURN VALUES:
 - #!/bin/bash
 NO_OF_ARGS=2
 E_BADARGS=85
 E_UNREADABLE=86
 if [$# -ne "$NO_OF_ARGS"
]; then echo "Usage: "$0" fileOne fileTwo";
exit $E_BADARGS; fi
 if [! -r "$1"] || [! -r
"$2"]; then echo "One or both files does not
exist: "$1" or "$2""; exit "$E_UNREADABLE";
fi
 (
 cmp $1 $2
) > /dev/null 2>&1
 if [$? -eq 0]; then echo
"Files are the same!"; else echo "Files are not
the same!"; fi
 exit 0
 - Explanation: This script will
accept two files and than compare if they are
identical. We are defining our "EXIT CODES" and
returning them depending on situation. (exit code
0 == good (true); exit code 1 == bad (false))

Bash Script Programming Language BasicsBash Script Programming Language Basics

http://www.cheatography.com/
http://www.cheatography.com/danilobanjac/
http://www.cheatography.com/danilobanjac/cheat-sheets/bash-scripting-language-cheat-sheet

ECHO:
- echo "Some text" (This is same like "print" in
python. It will print to command line)
- echo "Some text" #This is comment ("This is
comment" will not be executed)
DEFINING VARIABLES:
- name=10 (This desfines a variable with integer)
- name=tea (This defines a variable)
USING HASH "#":
- echo "The word $name contains ${#name} chars"
(This is how to do a string formatting in bash)
- $(#name) (This will return a lenght of the
string in bash)
- $name will replace this part of the string with
the current variable.

By danilobanjacdanilobanjac

cheatography.com/danilobanjac/

Not published yet.
Last updated 17th December, 2017.
Page 2 of 5.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/danilobanjac/
https://apollopad.com

Bash Scripting Language Cheat Sheet Cheat Sheet
by danilobanjac via cheatography.com/50162/cs/13858/

Bash Script Programming Language Basics (cont)Bash Script Programming Language Basics (cont)

> USING SEMICOLON:
- echo "hi there"; echo "you there?" (; semicolon sign will tell bash to
run this as a next line of the code)
IF/THEN/ELSE STATEMENT:
- var=10
- if ["$var" -gt 5]; then echo "YES"; else echo "NO"
fi (Please note the spaces inside the brackets they need to be there
for statement to run, and every semicolon will be seen as a next line
and at the end we have "fi" this closes the if statement)
FOR LOOP:
- colors="red black white" (This defines a variable as a string)
- for col in $colors
do (This will run the desired action)
echo "$col" (This will echo "col")
done (This will finish the for loop)
- if we run this script now the result below will be printed to console:
red
black
white
- as you can see for loop threated variable colors as a list. Because
"for col in $colors" dollar sign and colors will make a list from the
string. If we put $colors inside double quotes like this "$colors" this
will be then threated as a string and the ouput to the console will be:
red black white
- if we put single quotes '$colors' this would take the actual word
$colors and print it.
USING LET:
- let "y=((x=20, 10/2))" (let in bash will let us to perform arithemic
operations on variables)
- echo $y (This will return 5 because we separated the operation with
comma)
CHANGING THE STRING TO UPPER OR LOWER:
- var = DSLConnection
- echo ${var,} (This will change the first character of the string to
lower)
- echo ${var,,} (This will change the whole string to lower)
USING "\" ESCAPE CHARACTER:
- echo ""Linux is awesome""
will output this Linux is awesome to the console.
- echo "\"Linux is awesome"\" (This will take quotes literaly)
will output this "Linux is awesome" to the console
REASIGN THE VALUE:
- let val=500/2
val2=echo $val (This will allow us to reasign the value from the first
variabel to the second variabel)

Bash Script Programming Language Basics (cont)Bash Script Programming Language Basics (cont)

> echo "$val2"
will give same output "250"
IMPORTANT
In order to get the value from any oder script example Python. Bash
script will only recognise the value if value is printed, that means that
function can return number but at the end when we call the function
in python script it should look like this:
print return_value()
USING ":" SIGN:
- var=20
if ["$var" -gt 15]; then :;else echo "$var";fi (This ":" sign after then
will actually tell our code to do nothing this will come very useful,
same like "pass" in python)
IF STATEMENT USING "?" MARK:
- var=10
echo $((var2=var1<20?1:0)) (This will return the first value "1" if
statement is true and second value if statement is false. In this case
we don't need the "$" sign before "var1" to tell the program to use
value, this is special case)
CREATE ARRAY:
- Colors=(red blue green white) (This will create an array in bash)
WRAP STRINGS INTO SOME CHARACTERS:
- echo \+{test1,test2,test3}\+ (You can replace the "+" sign with any
other sing for example "$")
will output +test1+ +test2+ +test3+ to console
CREATE RANGE:
- echo {0..9} (This will print all numbers between 0 and 9 (including
9) same like range() in python)
SEPARATE THE BLOCK OF CODE:
- var1=1
var2=2
{
var1=10
var2=12
}
echo "$var1 $var2" (The output to the console will be 10 and 12
because "{}" will separate this part of code)
SAVE EXIT CODE FROM THE LAST COMMAND:
- python myPythonScript.py
ret=$?
if [$ret -ne 0]; then
#Handle failure
#exit if required

By danilobanjacdanilobanjac

cheatography.com/danilobanjac/

Not published yet.
Last updated 17th December, 2017.
Page 3 of 5.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/danilobanjac/
http://www.cheatography.com/danilobanjac/cheat-sheets/bash-scripting-language-cheat-sheet
http://www.cheatography.com/danilobanjac/
https://apollopad.com

Bash Scripting Language Cheat Sheet Cheat Sheet
by danilobanjac via cheatography.com/50162/cs/13858/

Bash Script Programming Language Basics (cont)Bash Script Programming Language Basics (cont)

> fi
USE EXIT CODE TO MANIPULATE SCRIPT:
- #!/bin/bash
touch /root/test 2> /dev/null
if [$? -eq 0]
then
echo "Successfully created file"
exit 0
else
echo "Could not create file" >&2
exit 1
fi
HIDE WHOLE OUTPUT FROM THE SCRIPT:
- (
 ./manage.py create_test_database
) > /dev/null 2>&1
CONNECTING IF STATEMENTS:
- var=1
if ["$var" -gt 0] && ["$var" -eq 10]; then echo "THEN PART"; else
echo "HELLOOO"; fi (Example with logical "and" statment)
var=1
if ["$var" -gt 0] || ["$var" -eq 10]; then echo "THEN PART"; else
echo "HELLOOO"; fi (Example with logical "or" statment)
MODULO:
 - let var=5%4
echo "$var" (Result will be one)
STRING UPPER CASE:
- some_word=tEsT
echo "${some_word^}" (This will grab first letter and make it upper
case)
echo "${some_word^^}" (This will grab whole word and make it upper
case)

By danilobanjacdanilobanjac

cheatography.com/danilobanjac/

Not published yet.
Last updated 17th December, 2017.
Page 4 of 5.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/danilobanjac/
http://www.cheatography.com/danilobanjac/cheat-sheets/bash-scripting-language-cheat-sheet
http://www.cheatography.com/danilobanjac/
https://apollopad.com

	Bash Scripting Language Cheat Sheet Cheat Sheet - Page 1
	Commands Line Commands
	Vim Commands
	Part One (Variables and Parameters)

	Bash Scripting Language Cheat Sheet Cheat Sheet - Page 2
	Part Two (Return Values)
	Bash Script Programming Language Basics

	Bash Scripting Language Cheat Sheet Cheat Sheet - Page 3
	Bash Scripting Language Cheat Sheet Cheat Sheet - Page 4

