
Bash Scripting Language Cheat Sheet Cheat Sheet
by danilobanjac via cheatography.com/50162/cs/13858/

Commands Line Commands

clear Clears the screeen.

vim
filena ​me.sh

Creates a .sh file.

sh filena ​me.sh Execute Bash Script.

./file ​name.sh Other way of executing bash script.

ls -l See all file permis ​sions inside a folder.

chmod +x
filena ​me.sh

This will add execute permission to the file.

ls --help This will open all available commands.

ls --help | grep
" ​\-U ​"

This will grab more inform ​ation about " ​-U" command.

touch wood.txt This will create a file.

echo "here is
something use
it" > wood.txt

This will write to the file that we first created.

cat wood.txt This will get us the output of the file.

cat
{testf ​ile ​01, ​tes ​tfi ​l
e02} > test00

This will take as many files as we want and store the
content of those file in one file in this case " ​tes ​t00 ​".

echo "here is
something
new" >
wood.txt

This will replace the whole content of the wood.txt file
with this new content, if we want to add to file we need
to use the command from below.

Commands Line Commands (cont)

echo "here is
comething new"
>> wood.txt

Double >> will add to file.

: > wood.txt This will empty the whole file, remeber " ​:" that says do
nothing.

rm wood.txt Will remove the file comple ​tely.

touch test1 test2
test3 test4

for example if we create a hundreds of file with similar
name how we could delete them all or select them all?
(Solution below).

rm test* ("*" astrix sign will mark everything that begins with
test and delete it.

Vim Commands

Press " ​a" In order to start editing the file.

Press " ​esc ​" In order to quit editing the file.

Write " ​:" To allow you to save or quit or write to file.

Write " ​:wg ​" To write those changes and quit with saving.

Write " ​:wg ​!" To force this action.

Write " ​:q! ​" To quit without saving.

By danilobanjac
cheatography.com/danilobanjac/

Not published yet.
Last updated 17th December, 2017.
Page 1 of 5.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/danilobanjac/
http://www.cheatography.com/danilobanjac/cheat-sheets/bash-scripting-language-cheat-sheet
http://www.cheatography.com/danilobanjac/
https://apollopad.com

Bash Scripting Language Cheat Sheet Cheat Sheet
by danilobanjac via cheatography.com/50162/cs/13858/

Part One (Variables and Parame ​ters)

ECHOING VARIABLES:

- var=10

echo var (This will echo " ​var ​")
echo $var (This will echo the actual value, this is

why we are using dollar sign " ​$" before variable. So
that program knows that we want a value from the

variable)

UNSET:

- var=10

unset var

echo $var ("un ​set ​" will actually reassign the value of
" ​var ​" to null)
ASIGN VALUE TO THE VARIABLE THROUGH USER:

- echo "type in some value"

read var2 (This will ask user for input same like

" ​pro ​mpt ​" in javascript and store this value to
variable)

echo $var2

PROPERTIES OF VARIABLES:

- var="T r a l a l a lalalal l"

echo $var (This will output the string but we will

miss some spaces, this means that ot all of our spaces

will be printed that is why we are using " ​")
var="T r a l a l a lalalal l"

echo " ​$va ​r" (When we use " ​" to wrap our variable with
as well the " ​$" dollar sign then all of our spaces
will be outputed. This is recomm ​ended way of doing
" ​ech ​o" in bash)
DEFINE NULL VARIABLE:

- var= (This will define variable with a value of

" ​nul ​l")
DECLARING VARIABEL ON SAME LINE:

- var1=11 var2=22 var3=33

echo " ​$var1 $var2 $var3" (Same like in javasc ​ript)
ASSIGNING, REASSI ​GNING AND UNSETTING THE VALUE:
- var=

echo " ​$va ​r"

Part One (Variables and Parame ​ters) (cont)

var=9

echo " ​$va ​r"
var=10

echo " ​$va ​r"
unset var

echo " ​$va ​r"
ASSIGN VALUE FROM BASH COMMAND TO VARIABLE:

- hi=$(ls -la) (This is the way of doing it)

 ​ ​ ​ ​ ​ ​ ​ ​ ​ echo " ​$hi ​" (Will print value of " ​hi")
ADDING TO A VARIABLE OR DOING ARITHMETIC OPERATIONS ON

VARIABLES:

- var=

let "var ++"

echo " ​$va ​r" (This will output 1)
let "var += 10"

echo " ​$va ​r" (This will output 10)

REPLACING VALUES IN NUMBER:

- num=1100

var=${ ​num ​/10/B}
echo " ​$va ​r" (This will echo " ​1B0 ​")
ENVIRO ​NMENTAL VARIABLES:
 ​ ​ ​ ​ ​ ​ ​ - #!/bin ​/bash
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​MIN=10 (Minimum passed arguments in order to
execute the script)

 ​ ​ ​ ​ ​ ​ ​ ​ ​ if [-n " ​$1"]; then echo "1st one is $1";
fi ("$1 ​" first argument that is being passed to script
and " ​-n" check if argument exists. Returning either
" ​tru ​e" or " ​fal ​se")
 ​ ​ ​ ​ ​ ​ ​ ​ ​ if [-n " ​$2"]; then echo "2st one is $2";
fi

 ​ ​ ​ ​ ​ ​ ​ ​ ​ if [-n " ​$3"]; then echo "3rd one is $3";
fi

 ​ ​ ​ ​ ​ ​ ​ ​ ​ if [-n " ​$4"]; then echo "4th one is $4";
fi

 ​ ​ ​ ​ ​ ​ ​ ​ ​ if [-n " ​$5"]; then echo "5th one is $5";
fi

 ​ ​ ​ ​ ​ ​ ​ ​ ​ if [-n " ​$6"]; then echo "6th one is $6";
fi

By danilobanjac
cheatography.com/danilobanjac/

Not published yet.
Last updated 17th December, 2017.
Page 2 of 5.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/danilobanjac/
http://www.cheatography.com/danilobanjac/cheat-sheets/bash-scripting-language-cheat-sheet
http://www.cheatography.com/danilobanjac/
https://apollopad.com

Bash Scripting Language Cheat Sheet Cheat Sheet
by danilobanjac via cheatography.com/50162/cs/13858/

Part One (Variables and Parame ​ters) (cont)

 ​ ​ ​ ​ ​ ​ ​ ​ ​ if [-n " ​$7"]; then echo "7th one is $7";
fi

 ​ ​ ​ ​ ​ ​ ​ ​ ​ if [-n " ​$8"]; then echo "8th one is $8";
fi

 ​ ​ ​ ​ ​ ​ ​ ​ ​ if [-n " ​$9"]; then echo "9th one is $9";
fi

 ​ ​ ​ ​ ​ ​ ​ ​ ​ if [-n " ​${1 ​0}"]; then echo "10th one is
${10}"; fi

 ​ ​ ​ ​ ​ ​ ​ ​ echo "List of arguments: " ​$ "" ("$ ​" this will
take all the arguments that are being passed to script)

 ​ ​ ​ ​ ​ ​ ​ ​ echo "Name of Script: \""$0 ​" ​\"" ("$0 ​" is used
to grab the name of the file)

 ​ ​ ​ ​ ​ ​ ​ ​ if [$# -lt " ​$MI ​N"]; then echo "Not enought
arguments, need " ​$MI ​N" to run!"; fi (This check " ​$#"
number of all arguments being passed to script and

compare it to our defined variable.)

 ​ ​ ​ ​ ​ ​ ​ ​ - sh filena ​me.sh 1 2 3 4 5 6 7 8 9 10
(Passing arguments to our script and printing them)

Part Two (Return Values)

RETURN VALUES:

 ​ ​ ​ ​ ​ ​ ​ ​ - #!/bin ​/bash
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​NO_ ​OF_ ​ARGS=2
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​E_B ​ADA ​RGS=85
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​E_U ​NRE ​ADA ​BLE=86
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ if [$# -ne " ​$NO ​_OF ​_AR ​GS"]; then echo
" ​Usage: " ​$0" fileOne fileTw ​o"; exit $E_BAD ​ARGS; fi
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ if [! -r " ​$1"] || [! -r " ​$2"]; then
echo "One or both files does not exist: " ​$1" or
" ​$2""; exit " ​$E_ ​UNR ​EAD ​ABL ​E"; fi
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ cmp $1 $2
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​) > /dev/null 2>&1
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ if [$? -eq 0]; then echo " ​Files are the
same!"; else echo " ​Files are not the same!"; fi
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ exit 0
 ​ ​ ​ ​ ​ ​ ​ ​ - Explan ​ation: This script will accept two
files and than compare if they are identical. We are

defining our "EXIT CODES" and returning them depending

on situation. (exit code 0 == good (true); exit code 1

== bad (false))

Bash Script Progra ​mming Language Basics

ECHO:

- echo "Some text" (This is same like " ​pri ​nt" in
python. It will print to command line)

- echo "Some text" #This is comment ("This is

commen ​t" will not be executed)
DEFINING VARIABLES:

- name=10 (This desfines a variable with integer)

- name=tea (This defines a variable)

USING HASH " ​#":
- echo "The word $name contains ${#name} chars" (This

is how to do a string formatting in bash)

- $(#name) (This will return a lenght of the string in

bash)

- $name will replace this part of the string with the

current variable.

USING SEMICOLON:

- echo "hi there"; echo "you there? ​" (; semicolon sign
will tell bash to run this as a next line of the code)

IF/THE ​N/ELSE STATEMENT:
- var=10

- if [" ​$va ​r" -gt 5]; then echo " ​YES ​"; else echo
" ​NO"
fi (Please note the spaces inside the brackets they

need to be there for statement to run, and every

semicolon will be seen as a next line and at the end we

have " ​fi" this closes the if statement)
FOR LOOP:

- colors ​="red black white" (This defines a variable as
a string)

- for col in $colors

do (This will run the desired action)

echo " ​$co ​l" (This will echo " ​col ​")
done (This will finish the for loop)

- if we run this script now the result below will be

printed to console:

red

black

white

By danilobanjac
cheatography.com/danilobanjac/

Not published yet.
Last updated 17th December, 2017.
Page 3 of 5.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/danilobanjac/
http://www.cheatography.com/danilobanjac/cheat-sheets/bash-scripting-language-cheat-sheet
http://www.cheatography.com/danilobanjac/
https://apollopad.com

Bash Scripting Language Cheat Sheet Cheat Sheet
by danilobanjac via cheatography.com/50162/cs/13858/

Bash Script Progra ​mming Language Basics (cont)

- as you can see for loop threated variable colors as a

list. Because "for col in $color ​s" dollar sign and
colors will make a list from the string. If we put

$colors inside double quotes like this " ​$co ​lor ​s" this
will be then threated as a string and the ouput to the

console will be:

red black white

- if we put single quotes '$colors' this would take

the actual word $colors and print it.

USING LET:

- let " ​y=(​(x=20, 10/2)) ​" (let in bash will let us to
perform arithemic operations on variables)

- echo $y (This will return 5 because we separated the

operation with comma)

CHANGING THE STRING TO UPPER OR LOWER:

- var = DSLCon ​nection
- echo ${var,} (This will change the first character

of the string to lower)

- echo ${var,,} (This will change the whole string to

lower)

USING " ​\" ESCAPE CHARACTER:
- echo " ​" ​Linux is awesom ​e""
will output this Linux is awesome to the console.

- echo " ​\"Linux is awesom ​e"\" (This will take quotes
literaly)

will output this " ​Linux is awesom ​e" to the console
REASIGN THE VALUE:

- let val=500/2

val2=echo $val (This will allow us to reasign the value

from the first variabel to the second variabel)

echo " ​$va ​l2"
will give same output " ​250 ​"
IMPORTANT

In order to get the value from any oder script example

Python. Bash script will only recognise the value if

value is printed, that means that function can return

number but at the end when we call the function in

python script it should look like this:

print return ​_va ​lue()
USING " ​:" SIGN:

Bash Script Progra ​mming Language Basics (cont)

- var=20

if [" ​$va ​r" -gt 15]; then :;else echo " ​$va ​r";fi (This
" ​:" sign after then will actually tell our code to do
nothing this will come very useful, same like " ​pas ​s"
in python)

IF STATEMENT USING " ​?" MARK:
- var=10

echo $((var2=v ​ar1 ​<20?1:0)) (This will return the
first value " ​1" if statement is true and second value
if statement is false. In this case we don't need the

" ​$" sign before " ​var ​1" to tell the program to use
value, this is special case)

CREATE ARRAY:

- Colors ​=(red blue green white) (This will create an
array in bash)

WRAP STRINGS INTO SOME CHARAC ​TERS:
- echo \+{tes ​t1, ​tes ​t2, ​tes ​t3}\+ (You can replace the
" ​+" sign with any other sing for example " ​$")
will output +test1+ +test2+ +test3+ to console

CREATE RANGE:

- echo {0..9} (This will print all numbers between 0

and 9 (including 9) same like range() in python)

SEPARATE THE BLOCK OF CODE:

- var1=1

var2=2

{

var1=10

var2=12

}

echo " ​$var1 $var2" (The output to the console will be
10 and 12 because " ​{}" will separate this part of
code)

SAVE EXIT CODE FROM THE LAST COMMAND:

- python myPyth ​onS ​cri ​pt.py
ret=$?

if [$ret -ne 0]; then

By danilobanjac
cheatography.com/danilobanjac/

Not published yet.
Last updated 17th December, 2017.
Page 4 of 5.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/danilobanjac/
http://www.cheatography.com/danilobanjac/cheat-sheets/bash-scripting-language-cheat-sheet
http://www.cheatography.com/danilobanjac/
https://apollopad.com

Bash Scripting Language Cheat Sheet Cheat Sheet
by danilobanjac via cheatography.com/50162/cs/13858/

Bash Script Progra ​mming Language Basics (cont)

#Handle failure

#exit if required

fi

USE EXIT CODE TO MANIPULATE SCRIPT:

- #!/bin ​/bash
touch /root/test 2> /dev/null

if [$? -eq 0]

then

echo " ​Suc ​ces ​sfully created file"
exit 0

else

echo " ​Could not create file" >&2
exit 1

fi

HIDE WHOLE OUTPUT FROM THE SCRIPT:

- (

 ​ ​ ​ ./mana ​ge.py create ​_te ​st_ ​dat ​abase
) > /dev/null 2>&1

CONNECTING IF STATEM ​ENTS:
- var=1

if [" ​$va ​r" -gt 0] && [" ​$va ​r" -eq 10]; then echo
"THEN PART"; else echo " ​HEL ​LOO ​O"; fi (Example with
logical " ​and ​" statment)
var=1

if [" ​$va ​r" -gt 0] || [" ​$va ​r" -eq 10]; then echo
"THEN PART"; else echo " ​HEL ​LOO ​O"; fi (Example with
logical " ​or" statment)
MODULO:

 - let var=5%4

echo " ​$va ​r" (Result will be one)
STRING UPPER CASE:

Bash Script Progra ​mming Language Basics (cont)

- some_w ​ord ​=tEsT
echo " ​${s ​ome ​_wo ​rd^ ​}" (This will grab first letter and
make it upper case)

echo " ​${s ​ome ​_wo ​rd}" (This will grab whole word and
make it upper case)

By danilobanjac
cheatography.com/danilobanjac/

Not published yet.
Last updated 17th December, 2017.
Page 5 of 5.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/danilobanjac/
http://www.cheatography.com/danilobanjac/cheat-sheets/bash-scripting-language-cheat-sheet
http://www.cheatography.com/danilobanjac/
https://apollopad.com

	Bash Scripting Language Cheat Sheet Cheat Sheet - Page 1
	Commands Line Commands
	Vim Commands

	Bash Scripting Language Cheat Sheet Cheat Sheet - Page 2
	Part One (Variables and Parame­ters)

	Bash Scripting Language Cheat Sheet Cheat Sheet - Page 3
	Bash Script Progra­mming Language Basics
	Part Two (Return Values)

	Bash Scripting Language Cheat Sheet Cheat Sheet - Page 4
	Bash Scripting Language Cheat Sheet Cheat Sheet - Page 5

