

SCH4U Organic Chemistry Cheat Sheet Cheat Sheet

by CyberCube via cheatography.com/175012/cs/36770/

Root Name/Branch Prefixes			
Number of C atoms / branches	Root prefix	Multiplying prefix	
1	meth-	mono-	
2	eth-	di-	
3	prop-	tri-	
4	but-	tetra-	
5	pent-	penta-	
6	hex-	hexa-	
7	hep-	hepta-	
8	oct-	octa-	
9	non-	nona-	
10	dec-	deca-	

Alkyl Groups	
CH3	methyl
C2H5	ethyl
C3H7	propyk
C4H9	butyl
C5H11	pentyl
C6H13	hexyl
C7H15	heptyl
C8H17	octyle
C9H19	nonyl
C10H21	decyl

Alkanes		
CH4	Methane	
C2H6	Ethane	
C3H8	Propane	
C4H10	Butane	
C5H12	Pentane	
C6H14	Hexane	
C7H16	Heptane	
C8H18	Octane	
C9H20	Nonane	
C10H22	Decane	
General Formula for an alkane is C(n)H(-		

General Formula for an alkane is C(n)H(-2n+2)

Alkanes are non-polar (only C-H bonds)

Common Functional Groups		
F	Flouro	
CI	Chloro	
Br	bromo	
1	iodo	
NO2	nitro	
NH2	amino	

Aikeries
General formula for alkenes is C(n)H(2n)
Alkenes contain a carbon to carbon double bond
Non-polar
Suffix if highest precedence is -ene

Alkynes
Alkynes have carbon-carbon triple bonds
General formula for alkynes is C(n)H(2n-2)
Non polar
suffix is -yne if highest precedence

Cyclic Aliphatics
Cyclic compounds occur when carbon
atoms are arranged to form rings
General formula for cyclic compounds

General formula for cyclic compounds are: C2H2n (cycloalkane), C2H2n-2 (cycloalkene), C2H2n-4 (cycloalkane).

Non-Polar

Prefix is cyclo

Aromatic nomenclature		
F	Flourobenzene	
Br	Bromobenzene	
Cl	Chlorobenzene	
NO2	Nitrobenzene	
COOH	Benzoic acid	
ОН	Phenol/hydroxy benzene	
NH2	aniline/aminobenzene	
CH3	Toluene/methylbenzene	
if 1,2 position	Ortho (o-)	
if 1,3 position	Meta (m-)	

By **CyberCube** cheatography.com/cybercube/

Not published yet. Last updated 28th January, 2023. Page 1 of 3. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

SCH4U Organic Chemistry Cheat Sheet Cheat Sheet

by CyberCube via cheatography.com/175012/cs/36770/

Aromatic nomenclature (cont)

if 1,4 position Para (p-)

Aromatics hydrocarbons are benzene or compounds containing a benzene ring.

Benzene has the chemical formula C6H6

Geometric Isomer/Structural Isomer

Structural Isomers are when compounds have the same chemical formula, but a different arrangement of atoms. {{/popup}}

Geometric Isomers are isomers where atoms are arranged the same but have a different 3-d arrangement. Alkenes can form cis-trans isomers Alkenes can form cis-trans isomers.

Intermolecular Forces

LDF	Very weak forces that exist in all atoms/molecules caused by instantaneous dipoles, become stronger as molecule gets larger
Dipole- Dipole	Strong attraction force between opposite charges of polar molecules
Hydrogen bonding	Very strong dipole-dipole forces with H atoms covalently

bonded with an N, O or F atom

(strength is in descending order)

Emprical and Molecular Formulas
n = m/MM
$m = m \times MM$
E.F = simplest formula
M F = MM actual/MM empirical formula

Functional Groups in descending order			
Functional Group	Prefix	Suffix	
Carboxylic Acid		-oic acid	
Ester		[branch]-yl [root]-oate	
Amide		-amide	
Aldehyde	formyl / oxo	-al	
Ketone	охо	-one	
Alcohol	hydroxy	-ol	
Amine	amino	-amine	
Alkene/Alkyn e		-ene/-yne	
Alkane			
Ether	-oxy		
Alkyl Halide	flouro/chloro/bromo/iodo		
Note: for Alkene/Alkynes, to determine which takes higher priority, choose for which ever gives the better number combination for side groups, if same then go			

Functional C	Groups cha	racteristics	
Functional Group	Polarity	Solubility	B.P/M.P
Alkane	Non- Polar	Slightly Soluble	Depends on Length, more C = Higher, less C = Lower
Alkene	Non- Polar	Slightly Soluble	Depends on Length of parent C chain
Alkyne	Non- Polar	Slightly Soluble	Depends on Length of parent C chain
Cycloalkyl	Non- Polar	Slightly Soluble	Depends on Length of parent C chain
Alcohol	Polar	Very Soluble	Depends on Length of parent C chain
Aldehy- des/Keton- e	Polar	Very Soluble	Very High
Carboxylic Acids/- Esters	Polar	Very Soluble	Very High
Ethers	Polar	Very Soluble	Depends on Length of parent C chain
Amines/A mides	Polar	Very Soluble	Depends on Length of parent C chain

alphabetically (ene > yne)

SCH4U Organic Chemistry Cheat Sheet Cheat Sheet

by CyberCube via cheatography.com/175012/cs/36770/

Organic Reactions I		
Combustion/C-omplete Oxidation	Adding Oxygen or Removing Hydrogen	
Substi- tution	Replacing a hydrogen for a Halogen (Halogenation)	
Addition of Alkanes	Breaking double bond by adding Halogen (Halogenation) , Hydrogen (Hydrogenation), or Water (Hydration)	
Elimin- ation of Alkanes	The opposite of Addition	
Mild Oxidation Reactions	Using Oxidizing agents to turn Primary alcohols into aldehy- des/carboxylic acids, and secondary alcohols into ketones.	
richer"	Markovniks Rule: "Rich get ohols do not react in mild eactions	

Organic Reactions II Reactions			
Formation of Ethers (Condensation/D- ehydration)	Alcohol + Alcohol> Ether		
Formation of Esters (Condensation/D- ehydration)	Alcohol + Carboxylic Acid> ester		
Decomposition of Esters (Hydrolosis)	Ester> Alcohol + Carboxylic Acid		
Formation of Amides (Conde- nsation/Dehydra- tion)	Amine + Carboxylic Acid> Amide + H2O		
Decomposition of Amides (Hydro- losis)	Amide + H2O> Amine + Carboxylic Acid		
Synthesis of Primary Amines (Substitution)	Alkyl Halide + ammonia> Primary Amine		
Synthesis of Secondary Amines (Substitution)	Alkyl Halide + Primary Amine> Secondary Amine		
Synthesis of Tertiary Amines (Substitution)	Alkyl Halide + Secondary Amine > Tertiary Amine		

Polym	ici S
_	Molecule that are composed of many ted subunits are called monomers
Create	ed through polymerization
•	nerization (addition - chain reaction of e) CxHy + CxHy+ CxHy+>
polyes	nerization (condensation with alcohol - ster) HOCxHyOH + HOOCCx- OH +> [O2CCxHyO2CxHyO2]n
polyar	nerization (condensation with alcohol - mide) H2NCxHyNH2 + HOOCCx- OOH +> [NOCCxHyO2CxHyON]n
reactii sides compl	nerization (condensation) need the ng functional groups to be on both of the monomers to be able to lete the chain reaction (-dioic acid, -diamine)

Benzene Reactions

Halogenation

(Dehydration)

Nitration

Alkylation

By CyberCube cheatography.com/cybercube/

Benzene + Halogen

Benzene + HNO3 (in

Benzene + Alkylhalide

acidic conditions)

Not published yet. Last updated 28th January, 2023. Page 3 of 3. Sponsored by **Readable.com**Measure your website readability!
https://readable.com