\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{CROSSANT (CROSSANT)} \pdfinfo{ /Title (integral-trigonometry.pdf) /Creator (Cheatography) /Author (CROSSANT (CROSSANT)) /Subject (Integral Trigonometry Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{C27A0E} \definecolor{LightBackground}{HTML}{FBF6EF} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Integral Trigonometry Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{CROSSANT (CROSSANT)} via \textcolor{DarkBackground}{\uline{cheatography.com/186482/cs/38992/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}CROSSANT (CROSSANT) \\ \uline{cheatography.com/crossant} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 28th May, 2023.\\ Updated 7th October, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{3.08574 cm} x{1.89126 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Basic Trigonometric Integrals}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{∫sin(x)dx}} & {\bf{-cos(x)+C}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\bf{∫cos(x)dx}} & {\bf{sin(x)+C}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} {\bf{∫sec\textasciicircum{}2\textasciicircum{}(x)dx}} & {\bf{tan(x)+C}} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} {\bf{∫sec(x)tan(x)dx}} & {\bf{sec(x)+C}} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} ∫csc\textasciicircum{}2\textasciicircum{}(x)dx & -cot(x)+C \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} ∫csc(x)cot(x)dx & -csc(x)+C \tn % Row Count 6 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.59264 cm} x{3.38436 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Common Trigonometric Integrals}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{∫sin(2x)dx}} & {\bf{-$\frac{1}{2}$cos(2x)+C}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{∫cos(2x)dx}} & {\bf{$\frac{1}{2}$sin(2x)+C}} = sin(x)cos(x)+C \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} ∫tan(x)dx & ln|sec(x)|+C \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} ∫sec(x)dx & ln|sec(x)+tan(x)|+C \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} ∫sec\textasciicircum{}3\textasciicircum{}(x)dx & $\frac{1}{2}$(sec(x)tan(x)+ln|sec(x)+tan(x)|)+C \tn % Row Count 8 (+ 2) % Row 5 \SetRowColor{white} ∫csc(x)dx & -ln|csc(x)+cot(x)|+C \tn % Row Count 10 (+ 2) % Row 6 \SetRowColor{LightBackground} ∫csc\textasciicircum{}3\textasciicircum{}(x)dx & -$\frac{1}{2}$(csc(x)cot(x)+ln|csc(x)+cot(x)|)+C \tn % Row Count 14 (+ 4) % Row 7 \SetRowColor{white} {\bf{∫1/(1+x\textasciicircum{}2\textasciicircum{})dx}} & {\bf{arctan(x)+C}} \tn % Row Count 16 (+ 2) % Row 8 \SetRowColor{LightBackground} ∫1/(a\textasciicircum{}2\textasciicircum{}+x\textasciicircum{}2\textasciicircum{})dx & (1/a)arctan(x/a)+C \tn % Row Count 18 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.59264 cm} x{3.38436 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Secant and Cosecant Integrals}} \tn % Row 0 \SetRowColor{LightBackground} Secant Integral 1 & ∫sec(x)dx = ln|sec(x)+tan(x)|+C \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Secant Integral 2 & ∫sec(x)dx = -ln|sec(x)-tan(x)|+C \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Secant Integral 3 & ∫sec(x)dx = $\frac{1}{2}$ln|(sin(x)+1)/(sin(x)-1)|+C \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} Secant Integral 4 & ∫sec(x)dx = ln|tan(x/2+π/4)|+C \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} Cosecant Integral 1 & ∫csc(x)dx = ln|csc(x)-cot(x)|+C \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} Cosecant Integral 2 & ∫csc(x)dx = -ln|csc(x)+cot(x)|+C \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} Cosecant Integral 3 & ∫csc(x)dx = $\frac{1}{2}$ln|(cos(x)-1)/(cos(x)+1)|+C \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} Cosecant Integral 4 & ∫csc(x)dx = ln|tan(x/2)|+C \tn % Row Count 16 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Sine and Cosine Unit Circle}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/crossant_1685307647_Sine and Cosine Unit Circle.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Powers of Trigonometric Functions}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\seqsplit{https://cheatography.com/crossant/cheat-sheets/integral-cases-for-trigonometric-powers/}% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.43873 cm} x{2.53827 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Quotient and Reciprocal Identities}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Tangent Quotient}} & {\bf{tan(x)=sin(x)/cos(x)}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{Cotangent Quotient}} & {\bf{cot(x)=cos(x)/sin(x)}} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{} \tn % Row Count 4 (+ 0) % Row 3 \SetRowColor{white} Sine Reciprocal & sin(x)=1/csc(x) \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} Cosine Reciprocal & cos(x)=1/sec(x) \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} Tangent Reciprocal & tan(x)=1/cot(x) \tn % Row Count 7 (+ 1) % Row 6 \SetRowColor{LightBackground} {\bf{Cosecant Reciprocal}} & {\bf{csc(x)=1/sin(x)}} \tn % Row Count 9 (+ 2) % Row 7 \SetRowColor{white} {\bf{Secant Reciprocal}} & {\bf{sec(x)=1/cos(x)}} \tn % Row Count 11 (+ 2) % Row 8 \SetRowColor{LightBackground} Cotangent Reciprocal & cot(x)=1/tan(x) \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.73735 cm} x{2.23965 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Pythagorean Identities}} \tn % Row 0 \SetRowColor{LightBackground} Sine-Cosine Pythagorean & {\bf{sin\textasciicircum{}2\textasciicircum{}(x)+cos\textasciicircum{}2\textasciicircum{}(x)=1}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Sine Pythagorean & {\bf{sin\textasciicircum{}2\textasciicircum{}(x)=1-cos\textasciicircum{}2\textasciicircum{}(x)}} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Cosine Pythagorean & {\bf{cos\textasciicircum{}2\textasciicircum{}(x)=1-sin\textasciicircum{}2\textasciicircum{}(x)}} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} Secant Pythagorean & {\bf{tan\textasciicircum{}2\textasciicircum{}(x)+1=sec\textasciicircum{}2\textasciicircum{}(x)}} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} Tangent Pythagorean & {\bf{tan\textasciicircum{}2\textasciicircum{}(x)=sec\textasciicircum{}2\textasciicircum{}(x)-1}} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} Secant-Tangent Pythagorean & sec\textasciicircum{}2\textasciicircum{}(x)-tan\textasciicircum{}2\textasciicircum{}(x)=1 \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} Cosecant Pythagorean & 1+cot\textasciicircum{}2\textasciicircum{}(x)=csc\textasciicircum{}2\textasciicircum{}(x) \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} Cotangent Pythagorean & cot\textasciicircum{}2\textasciicircum{}(x)=csc\textasciicircum{}2\textasciicircum{}(x)-1 \tn % Row Count 16 (+ 2) % Row 8 \SetRowColor{LightBackground} Cosecant-Cotangent Pythagorean & csc\textasciicircum{}2\textasciicircum{}(x)-cot\textasciicircum{}2\textasciicircum{}(x)=1 \tn % Row Count 18 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The last two triplets of Pythagorean identities are obtained by dividing all the terms of the original identity by sin$^{\textrm{2}}$(x) or cos$^{\textrm{2}}$(x)} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Sum and Difference Identities}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{sin(x+y)=sin(x)cos(y) + cos(x)sin(y)} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{sin(x-y)=sin(x)cos(y) - cos(x)sin(y)} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{cos(x+y)=cos(x)cos(y) - sin(x)sin(y)} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{cos(x-y)=cos(x)cos(y) + sin(x)sin(y)} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Right-Triangle Trigonometric Relations}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/crossant_1685307563_Labeled Right Triangle.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.05271 cm} x{1.46464 cm} x{2.05965 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Trigonometric Substitutions}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{a\textasciicircum{}2\textasciicircum{}-x\textasciicircum{}2\textasciicircum{}}} & {\bf{Let x=asin(θ)}} & {\bf{dx=acos(θ)dθ}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{x\textasciicircum{}2\textasciicircum{}-a\textasciicircum{}2\textasciicircum{}}} & {\bf{Let x=asec(θ)}} & {\bf{dx=asec(θ)tan(θ)dθ}} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{x\textasciicircum{}2\textasciicircum{}+a\textasciicircum{}2\textasciicircum{}}} & {\bf{Let x=atan(θ)}} & {\bf{dx=asec\textasciicircum{}2\textasciicircum{}(θ)dθ}} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} a\textasciicircum{}2\textasciicircum{}-b\textasciicircum{}2\textasciicircum{}x\textasciicircum{}2\textasciicircum{} & Let \seqsplit{x=(a/b)sin(θ)} & \seqsplit{dx=(a/b)cos(θ)dθ} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} b\textasciicircum{}2\textasciicircum{}x\textasciicircum{}2\textasciicircum{}-a\textasciicircum{}2\textasciicircum{} & Let \seqsplit{x=(a/b)sec(θ)} & \seqsplit{dx=(a/b)sec(θ)tan(θ)dθ} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} b\textasciicircum{}2\textasciicircum{}x\textasciicircum{}2\textasciicircum{}+a\textasciicircum{}2\textasciicircum{} & Let \seqsplit{x=(a/b)tan(θ)} & dx=(a/b)sec\textasciicircum{}2\textasciicircum{}(θ)dθ \tn % Row Count 12 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}---} \SetRowColor{LightBackground} \mymulticolumn{3}{x{5.377cm}}{Trigonometric substitutions are typically used under radicals, however, they are not required to be \newline \newline For definite integrals, you will need to set x equal to its respective bounds, and solve for θ in order to properly change the bounds of integration with respect to θ} \tn \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.38896 cm} x{2.58804 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Half-Angle and Double-Angle Identities}} \tn % Row 0 \SetRowColor{LightBackground} Sine Half-Angle & sin(x/2)={\bf{√}}($\frac{1}{2}$(1-cos(x))) \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Cosine Half-Angle & cos(x/2)={\bf{√}}($\frac{1}{2}$(1+cos(x))) \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{Sine Power-Reducing}} & {\bf{sin\textasciicircum{}2\textasciicircum{}(x)=$\frac{1}{2}$(1-cos(2x))}} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} {\bf{Cosine Power-Reducing}} & {\bf{cos\textasciicircum{}2\textasciicircum{}(x)=$\frac{1}{2}$(1+cos(2x))}} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{} \tn % Row Count 8 (+ 0) % Row 5 \SetRowColor{white} {\bf{Sine Double-Angle}} & {\bf{sin(2x)=2sin(x)cos(x)}} \tn % Row Count 10 (+ 2) % Row 6 \SetRowColor{LightBackground} {\bf{Cosine Double-Angle 1}} & {\bf{cos(2x)=cos\textasciicircum{}2\textasciicircum{}(x)-sin\textasciicircum{}2\textasciicircum{}(x)}} \tn % Row Count 12 (+ 2) % Row 7 \SetRowColor{white} Cosine Double-Angle 2 & cos(2x)=2cos\textasciicircum{}2\textasciicircum{}(x)-1 \tn % Row Count 14 (+ 2) % Row 8 \SetRowColor{LightBackground} Cosine Double-Angle 3 & cos(2x)=1-2sin\textasciicircum{}2\textasciicircum{}(x) \tn % Row Count 16 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Sine Power-Reducing and Cosine Power-Reducing identities are variations of the Half-Angle identities} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Tangent Unit Circle}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/crossant_1685308007_Tangent Unit Circle.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}