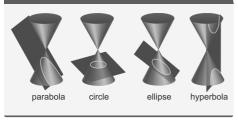


Conic Sections Cheat Sheet by CROSSANT (CROSSANT) via cheatography.com/186482/cs/38990/

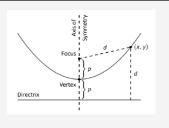
Parabolas with vertex (h,k) Opening up/down $(x-h)^2=\pm 4p(y-k)$ Vertical Focus (h, k+p)Directrix y=k-pOpening right/left $(y-k)^2=\pm 4p(x-h)$ Horizontal Focus (h+p, k)Directrix x=h-p

Any point on a parabola is equidistant from the parabola's focus and directrix

Conic Cross-Sections Diagram



Parabola opening upwards



Circles/Ellipses with center (h,k)		
Circle	$(x-h)^2+(y-k)^2=r^2$	
Circle Focus	(h,k)	
Circle Vertices	None	
Wide Ellipse	$(x-h)^2/a^2+(y-k)^2/b^2=1$	
Wide Foci	(h±c, k)	
Wide Vertices	(h±a, k±b)	
Tall Ellipse	$(x-h)^2/b^2+(y-k)^2/a^2=1$	
Tall Foci	(h, k±c)	

Circles/Ellipses with center (h,k) (cont)

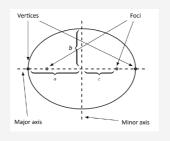
Tall Vertices	(h±b, k±a)
raii vertices	(n±b, k±a)

 $c^2=a^2-b^2$ and a>b>0

Formulas for foci generate two different points (+c and -c), and formulas for vertices generate four different vertices: (h+a,k) (h-a,k) (h,k+b) and (h,k-b)

Distances between a focal point to any point on the ellipse, plus the distance of the other focal point to that same point on the ellipse, gives a sum of distances that is constant for any point on the ellipse

Wide Ellipse



Hyperbolas with center (h,k)

Branches opening horizontally	$(x-h)^2/a^2$ -(y-k) ² /b ² =1
Horizontal Foci	(h±c, k)
Horizontal Vertices	(h±a, k)
Asymptotes	$y-k=\pm(b/a)(x-h)$
Branches opening vertically	$(y-k)^2/a^2-(x-h)^2/b^2=1$
Vertical Foci	(h, k±c)
Vertical Vertices	(h, k±a)

Hyperbolas with center (h,k) (cont)

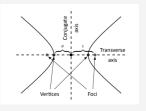
Asymptotes $y-k=\pm(a/b)(x-h)$

 $c^2=a^2+b^2$ and $a,b\neq0$

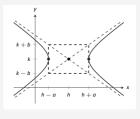
Formulas for foci generate two different points (+c and -c), formulas for vertices generate two different points (+a and -a), and formulas for asymptotes generate two different asymptotes (+(a/b) and -(a/b) or + (b/a) and -(b/a))

Distance of a focal point to a point on either hyperbola branch, minus distance of the other focal point to that same point on that same hyperbola branch, gives a value whose magnitude is constant for any point on either hyperbola branch

Horizontal Hyperbola



Horizontal Hyperbola Asymptotes



By CROSSANT (CROSSANT) cheatography.com/crossant/

Published 28th May, 2023. Last updated 1st December, 2025. Page 1 of 1.

Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords! http://crosswordcheats.com