Cheatography

Conic Sections Cheat Sheet by CROSSANT (CROSSANT) via cheatography.com/186482/cs/38990/

Parabolas with vertex (h,k)		
Opening up/down	(x-h) ² =±4p(y-k)	
Vertical Focus	(h, k+p)	
Directrix	y=k-p	
Opening right/left	$(y-k)^2 = \pm 4p(x-h)$	
Horizontal Focus	(h+p, k)	
Directrix	x=h-p	

Any point on a parabola is equidistant from the parabola's focus and directrix

Conic Cross-Sections Diagram

Circles/Ellipses with center (h,k)		
Circle	$(x-h)^2+(y-k)^2=r^2$	
Circle Focus	(h,k)	
Circle Vertices	None	
Wide Ellipse	$(x-h)^2/a^2+(y-k)^2/b^2=1$	
Wide Foci	(h±c, k)	
Wide Vertices	(h±a, k±b)	
Tall Ellipse	$(x-h)^2/b^2+(y-k)^2/a^2=1$	
Tall Foci	(h, k±c)	

Circles/Ellipses with center (h,k) (cont)

Tall Vertices	(h±b, k±a)	
$c^2=a^2-b^2$ and $ a \ge b >0$	0	
Formulas for foci generate two different		
points (+c and -c), and formulas for vertices		
generate four different vertices: (h+a,k) (h-		
a,k) (h,k+b) and (h,k-b)		
Distances between a focal point to any		
point on the ellipse, plus the distance of the		
other focal point to that same point on the		
ellipse, gives a sum of distances that is		
constant for any point on the ellipse		
Wide Ellipse		
Vertices	Foci	

Vertites b b c Major axis Minor axis

Hyperbolas with center (h,k)	
Pair opening left and right	(x-h) ² /a ² -(y- k) ² /b ² =1
Horizontal Foci	(h±c, k)
Horizontal Vertices	(h±a, k)
Asymptotes	y-k=±(b/a)(x-h)
Pair opening up and down	(y-k) ² /a ² -(x- h) ² /b ² =1
Vertical Foci	(h, k±c)
Vertical Vertices	(h, k±a)

Hyperbolas with center (h,k) (cont)

Asymptotes	y-k=±(a/b)(x-h)
------------	-----------------

c²=a²+b², |a|≠0, |b|≠0

Formulas for foci generate two different points (+c and -c), formulas for vertices generate two different points (+a and -a), and formulas for asymptotes generate two different asymptotes (+(a/b) and -(a/b) or + (b/a) and -(b/a))

Distance of a focal point to a point on either hyperbola branch, minus distance of the other focal point to that same point on that same hyperbola branch, gives a value whose magnitude is constant for any point on either hyperbola branch

Horizontal pair of Hyperbolas

Horizontal Hyperbola Asymptotes

By **CROSSANT** (CROSSANT) cheatography.com/crossant/

Published 28th May, 2023. Last updated 17th December, 2023. Page 1 of 1. Sponsored by **Readable.com** Measure your website readability! https://readable.com