Conic Sections Cheat Sheet
by CROSSANT (CROSSANT) via cheatography.com/186482/cs/38990/

Parabolas with vertex (h, k)	
Opening up/down	$(x-h)^{2}= \pm 4 p(y-k)$
Vertical Focus	$(h, k+p)$
Directrix	$y=k-p$
Opening right/left	$(y-k)^{2}= \pm 4 p(x-h)$
Horizontal Focus	$(h+p, k)$
Directrix	$x=h-p$

Any point on a parabola is equidistant from the parabola's focus and directrix

Parabola opening upwards

Circles/Ellipses with center (h, k)	
Circle	$(x-h)^{2}+(y-k)^{2}=r^{2}$
Circle Focus	(h, k)
Circle Vertices	None
Wide Ellipse	$(x-h)^{2} / a^{2}+(y-k)^{2} / b^{2}=1$
Wide Foci	$(h \pm c, k)$
Wide Vertices	$(h \pm a, k \pm b)$
Tall Ellipse	$(x-h)^{2} / b^{2}+(y-k)^{2} / a^{2}=1$
Tall Foci	$(h, k \pm c)$

Circles/Ellipses with center (h, k) (cont)	
Tall Vertices	($\mathrm{h} \pm \mathrm{b}, \mathrm{k} \pm \mathrm{a}$)
$\mathrm{c}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}$ and Formulas fo points (+c a generate fou a,k) (h,k+b) Distances b point on the other focal ellipse, give constant for	te two different rmulas for vertices rtices: (h+a,k) (h- al point to any the distance of the ame point on the stances that is the ellipse
Wide Ellipse	

\(\left.\left.$$
\begin{array}{ll}\hline \text { Hyperbolas with center }(h, k) \\
\hline \text { Pair opening left and } & (x-h)^{2} / a^{2}-(y- \\
\text { right } & k)^{2} / b^{2}=1\end{array}
$$\right] \begin{array}{ll}(h \pm c, k) \\
Horizontal Foci \& (h \pm a, k) \\
Horizontal Vertices \& y-k= \pm(b / a)(x-h) \\
Asymptotes \& (y-k)^{2} / a^{2}-(x- \\
Pair opening up and \\

down \& (h)^{2} / b^{2}=1\end{array}\right]\)| Vertical Foci |
| :--- |
| Vertical Vertices |

Hyperbolas with center (h, k) (cont)
Asymptotes $\quad y-k= \pm(a / b)(x-h)$
$c^{2}=a^{2}+b^{2},|a| \neq 0,|b| \neq 0$
Formulas for foci generate two different points ($+c$ and $-c$), formulas for vertices generate two different points (+a and -a), and formulas for asymptotes generate two different asymptotes $(+(a / b)$ and $-(a / b)$ or + (b/a) and -(b/a))
Distance of a focal point to a point on either hyperbola branch, minus distance of the other focal point to that same point on that same hyperbola branch, gives a value whose magnitude is constant for any point on either hyperbola branch

Horizontal pair of Hyperbolas

Horizontal Hyperbola Asymptotes

Sponsored by Readable.com
Measure your website readability!
https://readable.com

