\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{CROSSANT (CROSSANT)} \pdfinfo{ /Title (calculus-ii.pdf) /Creator (Cheatography) /Author (CROSSANT (CROSSANT)) /Subject (Calculus II Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{C43B00} \definecolor{LightBackground}{HTML}{FBF2EF} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Calculus II Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{CROSSANT (CROSSANT)} via \textcolor{DarkBackground}{\uline{cheatography.com/186482/cs/38975/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}CROSSANT (CROSSANT) \\ \uline{cheatography.com/crossant} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 28th May, 2023.\\ Updated 11th July, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Series}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Series Type}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Infinite Series} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Harmonic Series} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Geometric Series} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{P-Series} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Alternating Series} \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Telescoping Series} \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Alternating Series Estimation Theorem: If S\textasciitilde{}n\textasciitilde{}=Σ\textasciicircum{}n\textasciicircum{}\textasciitilde{}i=1\textasciitilde{}(-1)\textasciicircum{}n\textasciicircum{}b\textasciitilde{}n\textasciitilde{} or Σ\textasciicircum{}n\textasciicircum{}\textasciitilde{}i=1\textasciitilde{}(-1)\textasciicircum{}n-1\textasciicircum{}b\textasciitilde{}n\textasciitilde{} is the sum of an alternating series that converges, then |R\textasciitilde{}n\textasciitilde{}|=|S-S\textasciitilde{}n\textasciitilde{}|≤b\textasciitilde{}n+1\textasciitilde{} \newline Trigonometric functions like cos(nπ) or sin(nπ+π/2) act as sign alternators, like (-1)\textasciicircum{}n\textasciicircum{} \newline The Alternating Series Test does not show divergence, however, implementing the test requires a Test For Divergence, which does show divergence} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Series Tests}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Test Type}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Test for Divergence} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Integral Test} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{(Direct) Comparison Test} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Limit Comparison Test} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Ratio Test} \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Root Test} \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Absolute/Conditional Convergence} \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{For the series listed, assume each series to be an infinite series starting at n=k: Σ\textasciicircum{}∞\textasciicircum{}\textasciitilde{}n=k\textasciitilde{}=Σ \newline If Test for Divergence passes (lim \textasciitilde{}n-\textgreater{}∞\textasciitilde{} =0), use another test \newline The symbol {[} ⟺ {]} represents the relationship "if and only if" (often abbreviated to "iff"), meaning both sides of the statement must be true at the same time, or false at the same time \newline If a test is inconclusive, use another test} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{p{0.68458 cm} p{0.65825 cm} p{0.65825 cm} p{0.63192 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{3.833cm}}{\bf\textcolor{white}{Special Series}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Series}} & {\bf{Summation Form}} & {\bf{First five terms}} & {\bf{Radius and Interval of Convergence}} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} Power Series centered at a & ΣC\textasciitilde{}n\textasciitilde{}(x-a)\textasciicircum{}n\textasciicircum{} & C\textasciitilde{}0\textasciitilde{}+C\textasciitilde{}1\textasciitilde{}(x-a)+C\textasciitilde{}2\textasciitilde{}(x-a)\textasciicircum{}2\textasciicircum{}+C\textasciitilde{}3\textasciitilde{}(x-a)\textasciicircum{}3\textasciicircum{}+C\textasciitilde{}4\textasciitilde{}(x-a)\textasciicircum{}4\textasciicircum{}+... & \tn % Row Count 11 (+ 6) % Row 2 \SetRowColor{LightBackground} Taylor Series centered at a & Σf\textasciicircum{}(n)\textasciicircum{}(a)(x-a)\textasciicircum{}n\textasciicircum{}/n! & f(a)+f'(a)(x-a)+f''(a)(x-a)\textasciicircum{}2\textasciicircum{}/2!+f'''(a)(x-a)\textasciicircum{}3\textasciicircum{}/3!+f\textasciicircum{}(4)\textasciicircum{}(a)(x-a)\textasciicircum{}4\textasciicircum{}/4!+... & R\textgreater{}|x-a| \tn % Row Count 19 (+ 8) % Row 3 \SetRowColor{white} Maclaurin Series (Taylor Series centered at 0) & Σf\textasciicircum{}(n)\textasciicircum{}(0)(x-0)\textasciicircum{}n\textasciicircum{}/n!=Σf\textasciicircum{}(n)\textasciicircum{}(0)x\textasciicircum{}n\textasciicircum{}/n! & f(0)+f'(0)x+f''(0)x\textasciicircum{}2\textasciicircum{}/2!+f'''(0)x\textasciicircum{}3\textasciicircum{}/3!+f\textasciicircum{}(4)\textasciicircum{}(0)x\textasciicircum{}4\textasciicircum{}/4!+... & \tn % Row Count 26 (+ 7) % Row 4 \SetRowColor{LightBackground} 1/(1-x) & Σx\textasciicircum{}n\textasciicircum{} & 1+x+x\textasciicircum{}2\textasciicircum{}+x\textasciicircum{}3\textasciicircum{}+x\textasciicircum{}4\textasciicircum{}+... & R=1, I=(-1,1) \tn % Row Count 29 (+ 3) % Row 5 \SetRowColor{white} e\textasciicircum{}x\textasciicircum{} & Σx\textasciicircum{}n\textasciicircum{}/n! & 1+x+x\textasciicircum{}2\textasciicircum{}/2!+x\textasciicircum{}3\textasciicircum{}/3!+x\textasciicircum{}4\textasciicircum{}/4!+... & R=∞, I=(-∞,∞) \tn % Row Count 33 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{p{0.68458 cm} p{0.65825 cm} p{0.65825 cm} p{0.63192 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{3.833cm}}{\bf\textcolor{white}{Special Series (cont)}} \tn % Row 6 \SetRowColor{LightBackground} ln(1+x) & Σ(-1)\textasciicircum{}n+1\textasciicircum{}x\textasciicircum{}n\textasciicircum{}/n & x-x\textasciicircum{}2\textasciicircum{}/2+x\textasciicircum{}3\textasciicircum{}/3-x\textasciicircum{}4\textasciicircum{}/4+x\textasciicircum{}5\textasciicircum{}/5+... & R=1, I=(-1,1{]} \tn % Row Count 4 (+ 4) % Row 7 \SetRowColor{white} arctan(x) & Σ(-1)\textasciicircum{}n\textasciicircum{}x\textasciicircum{}2n+1\textasciicircum{}/(2n+1) & x-x\textasciicircum{}3\textasciicircum{}/3+x\textasciicircum{}5\textasciicircum{}/5-x\textasciicircum{}7\textasciicircum{}/7+x\textasciicircum{}9\textasciicircum{}/9+... & R=1, I={[}-1,1{]} \tn % Row Count 8 (+ 4) % Row 8 \SetRowColor{LightBackground} sin(x) & Σ(-1)\textasciicircum{}n\textasciicircum{}x\textasciicircum{}2n+1\textasciicircum{}/(2n+1)! & x-x\textasciicircum{}3\textasciicircum{}/3!+x\textasciicircum{}5\textasciicircum{}/5!-x\textasciicircum{}7\textasciicircum{}/7!+x\textasciicircum{}9\textasciicircum{}/9!+... & R=∞, I=(-∞,∞) \tn % Row Count 12 (+ 4) % Row 9 \SetRowColor{white} cos(x) & Σ(-1)\textasciicircum{}n\textasciicircum{}x\textasciicircum{}2n\textasciicircum{}/(2n)! & 1-x\textasciicircum{}2\textasciicircum{}/2!+x\textasciicircum{}4\textasciicircum{}/4!-x\textasciicircum{}6\textasciicircum{}/6!+x\textasciicircum{}8\textasciicircum{}/8!+... & R=∞, I=(-∞,∞) \tn % Row Count 16 (+ 4) % Row 10 \SetRowColor{LightBackground} (1+x)\textasciicircum{}k\textasciicircum{} & Σ(\textasciicircum{}k\textasciicircum{}\textasciitilde{}n\textasciitilde{})x\textasciicircum{}n\textasciicircum{}=Σ((k(k-1)(k-2)(k-3)...(k-n+1))/n!)x\textasciicircum{}n\textasciicircum{} & 1+kx+k(k-1)x\textasciicircum{}2\textasciicircum{}/2!+k(k-1)(k-2)x\textasciicircum{}3\textasciicircum{}/3!+k(k-1)(k-2)(k-3)x\textasciicircum{}4\textasciicircum{}/4!+... & R=1 \tn % Row Count 23 (+ 7) % Row 11 \SetRowColor{white} Taylor's \seqsplit{Inequality} & |R\textasciitilde{}n\textasciitilde{}(x)|≤M|x-a|\textasciicircum{}n+1\textasciicircum{}/(n+1)!, given M≥|f\textasciicircum{}(n+1)\textasciicircum{}(x)| for all |x-a|≤d & & \tn % Row Count 31 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}----} \SetRowColor{LightBackground} \mymulticolumn{4}{x{3.833cm}}{For the series listed, assume each series to be an infinite series starting at n=0: Σ\textasciicircum{}∞\textasciicircum{}\textasciitilde{}n=0\textasciitilde{}=Σ \newline Note that the formula for a Degree 1 Taylor Polynomial, T\textasciitilde{}1\textasciitilde{}(x), has the same formula as the Linear Approximation formula learned in Calculus I \newline f\textasciicircum{}(n)\textasciicircum{} means "the nth derivative of the function f" \newline n!=n(n-1)!=n(n-1)(n-2)!=n(n-1)(n-2)(n-3)!=... \newline n! = \seqsplit{n(n-1)(n-2)(n-3)...*3*2*1} \newline 0!=1, 1!=1} \tn \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.40753 cm} x{2.02547 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Areas of Functions}} \tn % Row 0 \SetRowColor{LightBackground} Between two functions & ∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} ((top function)-(bottom function))dA \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Enclosed by a polar function & $\frac{1}{2}$∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} f(θ)\textasciicircum{}2\textasciicircum{}dθ \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Between two polar functions & $\frac{1}{2}$∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} ((outer polar function)\textasciicircum{}2\textasciicircum{}-(inner polar function)\textasciicircum{}2\textasciicircum{})dθ \tn % Row Count 7 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{Area enclosed by a polar function is with respect to the pole, which is the origin \newline \newline Average value of a function: f\textasciitilde{}avg\textasciitilde{}=1/(b-a)∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} f(x)dx} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.0299 cm} x{2.4031 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Volumes of Solids of Revolution}} \tn % Row 0 \SetRowColor{LightBackground} Disk & π∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} (radius)\textasciicircum{}2\textasciicircum{}dV \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Washer & π∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} (outer radius)\textasciicircum{}2\textasciicircum{} - (inner radius)\textasciicircum{}2\textasciicircum{}dV \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} Cylindrical Shell & 2π∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} (radius)(height)dV \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{For Cylindrical Shells: radius=x or y, and height=f(x) or g(y)} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.09856 cm} x{2.33444 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Arc Lengths}} \tn % Row 0 \SetRowColor{LightBackground} Function & ∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} {\bf{√}}(1+(f'(x))\textasciicircum{}2\textasciicircum{})dx \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Parametric Function & ∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} {\bf{√}}((x'(t))\textasciicircum{}2\textasciicircum{}+(y'(t))\textasciicircum{}2\textasciicircum{})dt \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Polar Function & ∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} {\bf{√}}(r(θ)\textasciicircum{}2\textasciicircum{}+(r'(θ))\textasciicircum{}2\textasciicircum{})dθ \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{For standard functions: f'(x)=dy/dx \newline For parametric functions: x'(t)=dx/dt and y'(t)=dy/dt \newline For polar functions: r'(θ)=dr/dθ} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Surface Areas}} \tn % Row 0 \SetRowColor{LightBackground} Function revolved about an axis & 2π∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} (radius)(Arc Length component)ds \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Function revolved about y-axis & 2π∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} x{\bf{√}}(1+(f'(x))\textasciicircum{}2\textasciicircum{})dx \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} Function revolved about x-axis & 2π∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} y{\bf{√}}(1+(g'(y))\textasciicircum{}2\textasciicircum{})dy \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} Parametric function of t revolved about y-axis & 2π∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} f(x){\bf{√}}((x'(t))\textasciicircum{}2\textasciicircum{}+(y'(t))\textasciicircum{}2\textasciicircum{})dt \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} Parametric function of t revolved about x-axis & 2π∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} g(y){\bf{√}}((x'(t))\textasciicircum{}2\textasciicircum{}+(y'(t))\textasciicircum{}2\textasciicircum{})dt \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{f'(x)=dy/dx, g'(y)=dx/dy, x'(t)=dx/dt, and y'(t)=dy/dt} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.13289 cm} x{2.30011 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Integration by Parts}} \tn % Row 0 \SetRowColor{LightBackground} Indefinite Integral & ∫udv=uv-∫vdu \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Definite Integral & ∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} udv=uv|\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} -∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}b\textasciicircum{} vdu \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{Integration by Parts is used to integrate integrals that have components multiplied together in their simplest form, often referred to as a "product rule for integrals" \newline \newline Choosing the "dv" term depends on what will simplify the integral the best, while being relatively simple to integrate \newline \newline The constant of integration does not need to be inserted until the integral has been fully simplified} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Trigonometric Integrals}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{\seqsplit{https://cheatography.com/crossant/cheat-sheets/integral-trigonometry/}% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.75083 cm} x{1.68217 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Integration by Partial Fractions}} \tn % Row 0 \SetRowColor{LightBackground} (px+q)/((x-a)(x-b)) & A/(x-a) + B/(x-b) \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} (px+q)/(x-a)\textasciicircum{}2\textasciicircum{} & A/(x-a) + B/(x-a)\textasciicircum{}2\textasciicircum{} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} (px$^{\textrm{2}}$+qx+r)/((x-a)(x-b)(x-c)) & A/(x-a) + B/(x-b) + C/(x-c) \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} (px\textasciicircum{}2\textasciicircum{}+qx+r)/((x-a)\textasciicircum{}2\textasciicircum{}(x-b)) & A/(x-a) + B/(x-a)\textasciicircum{}2\textasciicircum{} + C/(x-b) \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} (px\textasciicircum{}2\textasciicircum{}+qx+r)/((x-a)(x\textasciicircum{}2\textasciicircum{}+bx+c)) & A/(x-a) + Bx+C/(x\textasciicircum{}2\textasciicircum{}+bx+c) \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} ∫1/(a\textasciicircum{}2\textasciicircum{}+x\textasciicircum{}2\textasciicircum{}) dx & (1/a)arctan(x/a)+C \tn % Row Count 10 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{Integration by Partial Fractions is used to simplify integrals of polynomial rational expressions into simpler fractions with a factored, irreducible denominator \newline \newline The degree (highest power) of the numerator's polynomial must be less than the degree of the denominator's polynomial, otherwise, polynomial long division must be used before converting the expression into partial fractions} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.30454 cm} x{2.12846 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Improper Integrals}} \tn % Row 0 \SetRowColor{LightBackground} ∫\textasciicircum{}∞\textasciicircum{}\textasciitilde{}a\textasciitilde{} f(x)dx & lim \textasciitilde{}t-\textgreater{}∞\textasciitilde{} ∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}t\textasciicircum{} f(x)dx \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} ∫\textasciicircum{}b\textasciicircum{}\textasciitilde{}-∞\textasciitilde{} f(x)dx & lim \textasciitilde{}t-\textgreater{}-∞\textasciitilde{} ∫\textasciitilde{}t\textasciitilde{}\textasciicircum{}b\textasciicircum{} f(x)dx \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} ∫\textasciicircum{}∞\textasciicircum{}\textasciitilde{}-∞\textasciitilde{} f(x)dx & lim \textasciitilde{}t-\textgreater{}-∞\textasciitilde{} ∫\textasciitilde{}t\textasciitilde{}\textasciicircum{}c\textasciicircum{} f(x)dx + lim \textasciitilde{}t-\textgreater{}∞\textasciitilde{} ∫\textasciitilde{}x\textasciitilde{}\textasciicircum{}t\textasciicircum{} f(x)dx \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} Convergence of ∫f(x)dx & lim \textasciitilde{}t-\textgreater{}±∞\textasciitilde{} =L \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} Divergence of ∫f(x)dx & lim \textasciitilde{}t-\textgreater{}±∞\textasciitilde{} =±∞ or DNE \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{Improper Integrals are integrals with bounds at infinity (Type 1) or discontinuous bounds (Type 2)} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Conic Sections}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{\seqsplit{https://cheatography.com/crossant/cheat-sheets/conic-sections/}% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Parametric Curves and Polar Functions}} \tn % Row 0 \SetRowColor{LightBackground} Parametric Curve C as a function of Parameter t & (x,y)=(f(t),g(t)) for t on {[}a,b{]} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Slope at a given point & \seqsplit{dy/dx=(dy/dt)/(dx/dt)} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} Second derivative & d\textasciicircum{}2\textasciicircum{}y/dx\textasciicircum{}2\textasciicircum{}=(dy/dt)/(dx/dt)\textasciicircum{}2\textasciicircum{} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} Polar Curve C as a function of Parameter θ & (r,θ)=(r,θ±2πn)=(-r,θ±πn) \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} Slope at a given point & \seqsplit{dy/dx=(dy/dθ)/(dx/dθ)} \tn % Row Count 12 (+ 2) % Row 5 \SetRowColor{white} \seqsplit{Cartesian/Rectangular} to Polar coordinates & x=rcos(θ), y=rsin(θ) \tn % Row Count 15 (+ 3) % Row 6 \SetRowColor{LightBackground} Polar to \seqsplit{Cartesian/Rectangular} coordinates & r\textasciicircum{}2\textasciicircum{}=x\textasciicircum{}2\textasciicircum{}+y\textasciicircum{}2\textasciicircum{} or r={\bf{√}}(x\textasciicircum{}2\textasciicircum{}+y\textasciicircum{}2\textasciicircum{}), tanθ=y/x or θ=arctan(y/x) \tn % Row Count 19 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{(dx/dt)≠0, (dx/dθ)≠0} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.40753 cm} x{2.02547 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Integral Approximations and Error Bounds}} \tn % Row 0 \SetRowColor{LightBackground} Midpoint Rule & Δx(f(x̄\textasciitilde{}1\textasciitilde{})+f(x̄\textasciitilde{}2\textasciitilde{})+f(x̄\textasciitilde{}3\textasciitilde{})+...+f(x̄\textasciitilde{}n-1\textasciitilde{})+f(x̄\textasciitilde{}n\textasciitilde{})) \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Trapezoidal Rule & (Δx/2)(f(x\textasciitilde{}1\textasciitilde{})+2f(x\textasciitilde{}2\textasciitilde{})+2f(x\textasciitilde{}3\textasciitilde{})+...+2f(x\textasciitilde{}n-1\textasciitilde{})+f(x\textasciitilde{}1\textasciitilde{})) \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} Simpson's Rule & (Δx/3)(f(x\textasciitilde{}1\textasciitilde{})+4f(x\textasciitilde{}2\textasciitilde{})+2f(x\textasciitilde{}3\textasciitilde{})+4f(x\textasciitilde{}4\textasciitilde{})+2f(x\textasciitilde{}5\textasciitilde{}))+...+2f(x\textasciitilde{}n-2\textasciitilde{})+4f(x\textasciitilde{}n-1\textasciitilde{})+f(x\textasciitilde{}n\textasciitilde{})) \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} Midpoint Rule Error Bound & |E\textasciitilde{}m\textasciitilde{}|≤k(b-a)\textasciicircum{}3\textasciicircum{}/24n\textasciicircum{}2\textasciicircum{}, k=f''(x)\textasciitilde{}max\textasciitilde{} on {[}a,b{]} \tn % Row Count 13 (+ 3) % Row 4 \SetRowColor{LightBackground} Trapezoidal Rule Error Bound & |E\textasciitilde{}t\textasciitilde{}|≤k(b-a)\textasciicircum{}3\textasciicircum{}/12n\textasciicircum{}2\textasciicircum{}, k=f''(x)\textasciitilde{}max\textasciitilde{} on {[}a,b{]} \tn % Row Count 16 (+ 3) % Row 5 \SetRowColor{white} Simpson's Rule Error Bound & |E\textasciitilde{}s\textasciitilde{}|≤k(b-a)\textasciicircum{}5\textasciicircum{}/180n\textasciicircum{}4\textasciicircum{}, k=f\textasciicircum{}(4)\textasciicircum{}(x)\textasciitilde{}max\textasciitilde{} on {[}a,b{]} \tn % Row Count 19 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{Integral Approximations are typically used to evaluate an integral that is very difficult or impossible to integrate \newline \newline Δx=(b-a)/n \newline \newline x̄=(x\textasciitilde{}i-1\textasciitilde{}+x\textasciitilde{}i\textasciitilde{})/2, the average/median of two points x\textasciitilde{}i-1\textasciitilde{} and x\textasciitilde{}i\textasciitilde{} \newline \newline Simpson's Rule can only be used if the given n is even, that is, n=2k for some integer k. \newline \newline In order of most accurate to least accurate approximation: Simpson's Rule, Midpoint Rule, Trapezoidal Rule, Left/Right endpoint approximation} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}