Cheatography

Calculus II Cheat Sheet by CROSSANT (CROSSANT) via cheatography.com/186482/cs/38975/

Series				
Series Type	General Summation	Convergence	Divergence	Notes
Infinite Series	$\Sigma a_n = \Sigma_{n=k}^{\infty} a_n$, where k is some whole number (k = {0, 1, 2,}) for which a_n is well-defined	Varies	Varies	
Harmonic Series	Σ1/n	Never converges	Always diverges	The alternating version of this series $(\Sigma(-1)^{n+1}/n)$ converges, and $\Sigma 1/n$ is a P-Series with p=1
Geometric Series	$\Sigma_{n=0}^{\infty} ar^{n} = \Sigma_{n=1}^{\infty} ar^{n-1}$, where a is the first term of the series, and r is the common ratio between terms	Converges if r <1	Diverges if r ≥1	If the series converges, its sum is S=a/(1-r)
P-Series	$\Sigma 1/n^p$, where p is a positive number	Converges if p>1	Diverges if p	≤1
Altern- ating Series	$\Sigma(-1)^{n}b_{n}, \Sigma(-1)^{n+1}b_{n}, \text{ or } \Sigma(-1)^{n-1}b_{n}$	Converges if lim _{n->∞} b _n =0 and b _n is a decreasing sequence (b _{n+1} ≤b _n for all n)	Cannot show	v divergence, inconclusive
Telesc- oping Series	$\Sigma(b_n-b_{n+1})$	Varies	Varies	

Alternating Series Estimation Theorem: If $S_n = \Sigma^n_{i=1}(-1)^{i_{b_i}}$ or $\Sigma^n_{i=1}(-1)^{i-1}b_i$ is the sum of an alternating series that converges, then $|R_n| = |S-S_n|$

≤b_{n+1}

Trigonometric functions like $\cos(n\pi)$ or $\sin(n\pi+\pi/2)$ act as sign alternators, like $(-1)^n$

The Alternating Series Test (AST) checks the limit, but since the AST only concludes convergence, we explicitly apply the Test For Divergence (albeit, redundantly) if the limit fails (even though it checks the same limit)

Series Tests					
Test Type		Typical series to use	test Convergence	Divergence	Notes
Test for Divergence		Σa _n	Cannot show convergence, inconclusive	Diverges if lim _{n->}	∞ a _n ≠0 or DNE
		SANT (CROSSANT) aphy.com/crossant/	Published 28th May, 2023. Last updated 12th May, 2025. Page 1 of 5.	Sponsored by Readable Measure your website re https://readable.com	

Calculus II Cheat Sheet

Cheatography

by CROSSANT (CROSSANT) via cheatography.com/186482/cs/38975/

Series Tests (cont)				
Integral Test	a _n ≡f(n), which is a positive, continuous, decreasing function on the interval [k,∞), usually with clearly-integrable functions	Converges if \int_{k}^{∞} f(n)dn converges	Diverges if ∫ _k	ς [∞] f(n)dn diverges
(Direct) Comparison Test	a _n and b _n are positive-termed (a _n ≥0 and b _n ≥0 for all n) and a _n ≤b _n for all n	Σa _n converges if Σb _n converges	Σb _n diverges if Σa _n diverges	Inconclusive if b _n diverges in proving convergence, or a _n converges in proving divergence
Limit Comparison Test	a_{n} and b_{n} are positive-termed, and lim $_{n\text{-}>\infty}$ $a_{n}/b_{n}\text{=}c,$ where 0 <c<<math display="inline">\!\!\infty</c<<math>	Σa _n converges ⇔Σb _n converges	Σa _n diverges ⇔Σb _n diverges	Inconclusive if c=0, c= ∞ , or c DNE
Ratio Test	$\Sigma a_{n},$ usually with n! terms, product terms, or $\left(a_{n}\right)^{n}$	Absolutely converges if lim n->∞ ^a n+1/a _n <1	Diverges if lim _{n->∞} a _{n+1} /a _n >1	Inconclusive if $\lim_{n\to\infty} a_{n+1}/a_n =1$
Root Test	Σa_n , usually with $(a_n)^n$	Absolutely converges if lim _{n->∞} a _n ^{1/n} <1	Diverges if lim _{n->∞} ∣a _n ∣ ^{1/n} >1	Inconclusive if $\lim_{n\to\infty} a_n ^{1/n}=1$
Absolute/Condit- ional Convergence Classification	Σa _n	Absolutely converges if Σ a _n converges	Diverges if Σa _n diverges	Conditionally converges if Σ a _n diverges, but Σa _n converges

For the series listed, assume each series to be an infinite series starting at n=k: $\Sigma^{\circ}_{n=k}=\Sigma$ as previously defined

If a test is inconclusive, use another test

The symbol [] represents the relationship "if and only if" (often abbreviated to "iff"), meaning both sides of the statement must be true at the same time, or false at the same time

Special Series				
Series	Summation Form	First five terms	Radius & Interval of Convergence	
Power Series centered at a	ΣC _n (x-a) ⁿ	$C_0+C_1(x-a)+C_2(x-a)^2+C_3(x-a)^3+C_4(x-a)^4+$	(a-R, a+R), [a-R, a+R), (a-R, a+R], or [a-R, a+R]	
Taylor Series centered at a	$\Sigma f^{(n)}(a)(x-a)^n/n!$	$\begin{array}{l} f(a)+f'(a)(x-a)+f''(a)(x-a)^{2}/2!+f'''(a)(x-a)^{3}/3!+f^{(4)}(a)(x-a)^{4}/4!+ \end{array}$	x-a <r< td=""></r<>	
Maclaurin Series (Taylor Series centered at 0)	$\Sigma f^{(n)}(0)(x-0)^n/n!=\Sigma f^{(n)}(0)x^n/n!$	$ \begin{array}{l} f(0)+f'(0)x+\\ f''(0)x^2/2!+f'''(0)x^3/3!+f^{(4)}(0)x^4/4!+ \end{array} $	x <r< td=""></r<>	
1/(1-x)	Σx ⁿ	1+x+x ² +x ³ +x ⁴ +	R=1, I=(-1,1)	

By CROSSANT (CROSSANT) cheatography.com/crossant/

Published 28th May, 2023. Last updated 12th May, 2025. Page 2 of 5.

Sponsored by Readable.com Measure your website readability! https://readable.com

Calculus II Cheat Sheet

Cheatography

by CROSSANT (CROSSANT) via cheatography.com/186482/cs/38975/

Special Series (cont)				
e ^x	Σx ⁿ /n!	$1+x+x^{2}/2!+x^{3}/3!+x^{4}/4!+$	R=∞, I=(-∞,∞)	
ln(1+x)	$\Sigma(-1)^{n}x^{n+1}/(n+1)$	x-x ² /2+x ³ /3-x ⁴ /4+x ⁵ /5	R=1, I=(-1,1]	
arctan(x)	$\Sigma(-1)^n x^{2n+1}/(2n+1)$	x-x ³ /3+x ⁵ /5-x ⁷ /7+x ⁹ /9	R=1, I=[-1,1]	
sin(x)	$\Sigma(-1)^n x^{2n+1}/(2n+1)!$	x-x ³ /3!+x ⁵ /5!-x ⁷ /7!+x ⁹ /9!	R=∞, I=(-∞,∞)	
cos(x)	$\Sigma(-1)^n x^{2n}/(2n)!$	$1-x^2/2!+x^4/4!-x^6/6!+x^8/8!$	R=∞, I=(-∞,∞)	
(1+x) ^k	$\Sigma(k_n)x^n = \Sigma((k(k-1)(k-2)(k-3)(k-n+1))/n!)x^n$	$1 + kx + k(k-1)x^2/2! + k(k-1)(k-2)x^3/3! + k(k-1)(k-2)(k-3)x^4/4! + \dots$	R=1	
Taylor's Inequality	R _n (x) ≤M x-a ⁿ⁺¹ /(n+1)!, where M is a consta	ant such that ∣f ⁽ⁿ⁺¹⁾ (x) ≤M for all x-a ≤d		

For the series listed, assume each series to be an infinite series starting at n=0: $\Sigma_{n=0}^{\circ}=\Sigma$ as previously defined

The Radius of Convergence, R, is typically found by using the Ratio Test or Root Test

 $\binom{k}{n}$ is the "binomial coefficient" (read as "k choose n"). $\binom{k}{n} = \frac{k!}{(n!(k-n)!)}$

 $\boldsymbol{f}^{(n)}$ means "the nth derivative of the function $\boldsymbol{f}^{"}$

n!=n(n-1)!=n(n-1)(n-2)!=n(n-1)(n-2)(n-3)!=...

n! = n(n-1)(n-2)(n-3)...*3*2*1

0!=1, 1!=1

							_
Areas of F	unctions	Surface Areas		Trigonometric I	Integrals	Improper Inte	egrals (cont)
Between two functions	\int_{a}^{b} ((top function)- (bottom function))dA	Function revolved about an axis	2π∫a ^b (radiu- s)(Arc Length compon-	https://cheatog ant/cheat-shee onometry/	raphy.com/cross- ts/integral-trig-	Conver- gence of ∫f(x)dx	$\label{eq:lim_t->_t_s} \lim_{t\to \pm\infty} f(x) dx = L,$ where L is a constant
Enclosed by a	$\frac{1}{2}\int_{a}^{b}f(\theta)^{2}d\theta$	Function	ent)ds 2π∫a ^b x√(1+		Partial Fractions	Divergence of ∫f(x)dx	lim $_{t->\pm\infty}$ f(x)dx= $\pm\infty$ or DNE
polar function		revolved about y-axis	$(f'(x))^2)dx$	(px+q)/((x-a) (x-b))	A/(x-a) + B/(x-b)		egrals are integrals
Between two polar functions	$\frac{1}{2}\int_{a}^{b}$ ((outer polar function) ² -(inner polar function) ²)dθ	Function revolved about x-axis	2π∫a ^b y√(1+ (g'(y)) ²)dy	(px+q)/(x-a) ²	A/(x-a) + B/(x- a) ²	or at least or	at infinity (Type 1) ne discontinuity on d region (Type 2)
Area enclo	osed by a polar	Parametric	2π∫a ^b	(px ² +qx+r)/(- (x-a)(x-b)(x-	A/(x-a) + B/(x-b) + C/(x-c)	Conic Section	ns
	with respect to the h is the origin	function of t revolved about y-axis	$f(x)\sqrt{((x'(t))^2+}$ $(y'(t))^2)dt$	c)) (px ² +qx+r)/((x-a) ² (x-b))	$A/(x-a) + B/(x-a)^{2} + C/(x-b)$		ography.com/cross- eets/conic-sections/
Average value of a function: $f_{avg}=1/(b-a)\int_{a}^{b} f(x)dx$		Parametric function of t revolved about	$2\pi \int_{a}^{b}$ g(y) $\sqrt{((x'(t))^{2}+}$ (y'(t)) ²)dt	(px ² +qx+r)/((- x-a) (x ² +bx+c))	$A/(x-a) + Bx+C/(x^2+bx+c)$	Parametric C Functions	Curves and Polar
	f Solids of Revolution $\pi \int_a^b (radius)^2 dV$	x-axis $f'(x) = dy/dx q'(y)$	=dx/dy_x'(t)=-	$\int 1/(a^2+x^2) dx$	(1/a)arctan(- x/a)+C		
Washer	$\pi \int_{a}^{b} (\text{outer radius})^2 - (\text{inner radius})^2 \text{dV}$	f'(x)=dy/dx, g'(y)=dx/dy, x'(t)=- dx/dt, and y'(t)=dy/dt Integration by Parts			Partial Fractions		
	2π∫a ^b (radius)(hei- ght)dV	Indefinite ∫ Integral	udv=uv-∫vdu	polynomial rational into simpler fra factored, irredu			
For Cylindrical Shells: radius=x or y, and height=f(x) or g(y)		v	a ^b udv=uv a ^b - a ^b vdu	nator The degree (hi	ghest power) of		
Arc Lengths		Integration by Pa integrate integra components mul in their simplest	ls that have tiplied together	the numerator's	s polynomial must e degree of the polynomial,		

referred to as a "product rule for

Function	∫a ^b √(1+
	$(f'(x))^2)dx$
Parametric	$\int_a{}^b\sqrt{((x'(t))^2}+$
Function	(y'(t)) ²)dt
Polar	$\int_a^b (r(\theta)^2 + $
Function	$(r'(\theta))^2)d\theta$

For standard functions: f'(x)=-

For parametric functions: x'(t)=-

For polar functions: $r'(\theta)=dr/d\theta$

dx/dt and y'(t)=dy/dt

dy/dx

integrals"

Choosing the "dv" term depends on what will simplify the integral the best, while being relatively simple to integrate

The constant of integration does not need to be inserted until the integral has been fully simplified division must be used before converting the expression into partial fractions

Improper Integrals				
∫∞a	$\lim_{t\to\infty}\int_{a}^{t}f(x)dx$			
f(x)dx				
∫b∞	lim $_{t \rightarrow -\infty} \int_{t}^{b} f(x) dx$			
f(x)dx				
∫°°-∞	$\lim_{t\to -\infty} \int_t^c f(x) dx + \lim_{t\to -\infty} \int_t^c f(x) dx$			
f(x)dx	$_{t \rightarrow \infty} \int_{X}^{t} f(x) dx$			

	Parametric Curve C as a function of Parameter t	(x,y)=(f(t),g(t)) for t on [a,b]
	Slope at a given point	dy/dx=- (dy/dt)/(dx/dt)
	Second derivative	$d^2y/dx^2=(dy/d-t)/(dx/dt)^2$
	Polar Curve C as a function of Parameters r and θ	(r,θ)=(r,θ±2- πn)=(-r,θ±πn)
	Slope at a given point	dy/dx=- (dy/dθ)/(dx/dθ)
	Cartesian/Re- ctangular to Polar coordi- nates	x=rcos(θ), y=rsin(θ)
	Polar to Cartesian/Re- ctangular coordinates	$r^2=x^2+y^2$ or $r=\sqrt{(x^2+y^2)}$, $tan\theta=y/x$ or $\theta=arctan(y/x)$
1	(dx/dt)≠0, (dx/dθ)≠0

By CROSSANT (CROSSANT) cheatography.com/crossant/

Published 28th May, 2023. Last updated 12th May, 2025. Page 4 of 5. Sponsored by Readable.com

Measure your website readability! https://readable.com

Cheatography

Calculus II Cheat Sheet by CROSSANT (CROSSANT) via cheatography.com/186482/cs/38975/

Integral Approximations and Error Bounds					
Midpoint Rule	$\Delta x(f(\bar{x}_1)+f(\bar{x}_2)+f(\bar{x}_3)+$	\dots +f(\bar{x}_{n-1})+f(\bar{x}_{n}))			
Trapez- oidal Rule	$(\Delta x/2)(f(x_1)+2f(x_2)+2f(x_3)++2f(x_{n-1})+f(x_1))$				
Simpson's Rule	$ \begin{aligned} &(\Delta x/3) \\ &(f(x_1)+4f(x_2)+2f(x_3)+4f(x_4)+2f(x_5))+\ldots+ \\ &2f(x_{n-2})+4f(x_{n-1})+f(x_n)) \end{aligned} $				
Midpoint Rule Error Bound	ule Error				
Trapez- oidal Rule Error Bound					
Simpson's Rule Error Bound	[4,0]				
Integral Approximations are typically used to evaluate an integral that is very difficult or impossible to integrate					
∆x=(b-a)/n					
$\bar{x} = (x_{i-1} + x_i)/2$, the average/m- edian of two points x_{i-1} and x_i					
Simpson's Rule can only be used if the given n is even, that is, n=2k for some integer k					
In order of most accurate to least accurate approximation: Simpson's Rule, Midpoint Rule, Trapezoidal Rule, Left/Right endpoint approximation					

By **CROSSANT** (CROSSANT) cheatography.com/crossant/

Published 28th May, 2023. Last updated 12th May, 2025. Page 5 of 5.

Sponsored by Readable.com Measure your website readability! https://readable.com