

Calculus II Cheat Sheet by CROSSANT (CROSSANT) via cheatography.com/186482/cs/38975/

Series				
Series Type	General Summation	Convergence	Divergence	Notes
Infinite Series	$\Sigma a_n = \Sigma^{\infty}_{n=k} a_n$, where k is some whole number (k = {0, 1, 2,}) for which a_n is well-defined	Varies	Varies	
Harmonic Series	Σ1/n	Never converges	Always diverges	The alternating version of this series $(\Sigma(-1)^{n+1}/n)$ converges, and $\Sigma 1/n$ is a P-Series with p=1
Geometric Series	$\Sigma^{\infty}_{n=0}$ ar ⁿ = $\Sigma^{\infty}_{n=1}$ ar ⁿ⁻¹ , where a is the first term of the series, and r is the common ratio between terms	Converges if r <1	Diverges if r ≥1	If the series converges, its sum is S=a/(1-r)
P-Series	$\Sigma 1/n^p$, where p is a positive number	Converges if p>1	Diverges if p	≤1
Altern- ating Series	$\Sigma (-1)^{n} b_{n}$, $\Sigma (-1)^{n+1} b_{n}$, or $\Sigma (-1)^{n-1} b_{n}$	Converges if $\lim_{n\to\infty} b_n = 0$ and b_n is a decreasing sequence (or eventually decreasing)	Cannot show	v divergence, inconclusive
Telesc- oping Series	$\Sigma(b_n-b_{n+1})$	Varies	Varies	

Alternating Series Estimation Theorem: If $S_n = \Sigma^n_{i=1}(-1)^i b_i$ or $\Sigma^n_{i=1}(-1)^{i-1} b_i$ is the sum of an alternating series that converges, then $|R_n| = |S - S_n| \le b_{n+1}$

Trigonometric functions like $cos(n\pi)$ or $sin(n\pi+\pi/2)$ act as sign alternators, like $(-1)^n$

The Alternating Series Test (AST) checks the limit, but since the AST only concludes convergence, we explicitly apply the Test For Divergence (albeit, redundantly) if the limit fails (even though it checks the same limit)

Series Tests				
Test Type	Typical series to use test	Convergence	Divergence	Notes
Test for Divergence	Σa _n	Cannot show convergence, inconclusive	Diverges if lim	_{n->∞} a _n ≠0 or DNE
(Direct) Comparison Test	a_n and b_n are positive-termed ($a_n \ge 0$) and $b_n \ge 0$ for all n) and $a_n \le b_n$ for all n	Σa_n converges if Σb_n converges	Σb_n diverges if Σa_n diverges	Inconclusive if $\mathbf{b_n}$ diverges in proving convergence, or $\mathbf{a_n}$ converges in proving divergence

By **CROSSANT** (CROSSANT) cheatography.com/crossant/

Published 28th May, 2023. Last updated 20th October, 2025. Page 1 of 5. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish
Yours!

https://apollopad.com

Calculus II Cheat Sheet by CROSSANT (CROSSANT) via cheatography.com/186482/cs/38975/

Series Tests (cont)				
Limit Comparison Test	a_n and b_n are positive-termed, and lim $_{n\infty}$ $a_n/b_n\text{=-}c,$ where $0\text{<-}c\text{<-}\infty$	Σa _n converges ⇔ Σb _n converges	Σa_n diverges \iff Σb_n diverges	Inconclusive if $c=0$, $c=\infty$, or c DNE
Ratio Test	Σa_n , usually with n! terms, product terms, or $(a_n)^n$	Absolutely converges if $\lim_{n\to\infty} a_{n+1}/a_n < 1$	Diverges if $\lim_{n\to\infty} a_{n+1}/a_n > 1$	Inconclusive if $\lim_{n\to\infty}$ $ a_{n+1}/a_n =1$
Root Test	$Σa_n$, usually with $(a_n)^n$	Absolutely converges if $\lim_{n\to\infty} a_n ^{1/n} < 1$	Diverges if $\lim_{n\to\infty} a_n ^{1/n} > 1$	Inconclusive if $\lim_{n\to\infty}$ $ a_n ^{1/n}=1$
Integral Test	$a_n \equiv f(x), \text{ which is a positive, continuous, decreasing} \\$ function on the interval $[k,\infty)$, usually with clearly-integrable functions	Converges if $\int_{\mathbf{k}}^{\infty}$ $f(\mathbf{x})d\mathbf{x}$ converges	Diverges if $\int_{\mathbf{k}}$	° f(x)dx diverges
Absolute/Conditional Convergence Classification	Σa _n	Absolutely converges if $\Sigma a_n $ converges	Diverges if Σa _n diverges	Conditionally converges if $\Sigma a_n \text{ diverges, but } \Sigma a_n$ converges

For the series listed, assume each series to be an infinite series starting at n=k: $\Sigma^{\circ}_{n=k}=\Sigma$ as previously defined

If a test is inconclusive, use another test

The symbol [\iff] represents the relationship "if and only if" (often abbreviated to "iff"), meaning both sides of the statement must be true at the same time, or false at the same time

Special Series			
Series	Summation Form	First five terms	Radius & Interval of Convergence
Power Series centered at a	$\Sigma C_n(x-a)^n$	$C_0+C_1(x-a)+C_2(x-a)^2+C_3(x-a)^3+C_4(x-a)^4+$	(a-R, a+R), [a-R, a+R), (a-R, a+R], or [a-R, a+R]
Taylor Series centered at a	$\Sigma f^{(n)}(a)(x-a)^n/n!$	$f(a)+f'(a)(x-a)+f''(a)(x-a)^{2}/2!+f'''(a)(x-a)^{3}/3!+f^{(4)}(a)(x-a)^{4}/4!+$	x-a <r< td=""></r<>
Maclaurin Series (Taylor Series centered at 0)	$\Sigma f^{(n)}(0)(x-0)^n/n!=\Sigma f^{(n)}(0)x^n/n!$	f(0)+f'(0)x+- $f''(0)x^2/2!+f'''(0)x^3/3!+f^{(4)}(0)x^4/4!+$	x <r< td=""></r<>
1/(1-x)	Σx^n	$1+x+x^2+x^3+x^4+$	R=1, I=(-1,1)
e ^X	$\Sigma x^{n}/n!$	$1+x+x^2/2!+x^3/3!+x^4/4!+$	R=∞, I=(-∞,∞)
In(1+x)	$\Sigma(-1)^n x^{n+1}/(n+1)$	$x-x^2/2+x^3/3-x^4/4+x^5/5$	R=1, I=(-1,1]
arctan(x)	$\Sigma(-1)^n x^{2n+1}/(2n+1)$	x-x ³ /3+x ⁵ /5-x ⁷ /7+x ⁹ /9	R=1, I=[-1,1]

By **CROSSANT** (CROSSANT) cheatography.com/crossant/

Published 28th May, 2023. Last updated 20th October, 2025. Page 2 of 5. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish
Yours!
https://apollopad.com

Calculus II Cheat Sheet

by CROSSANT (CROSSANT) via cheatography.com/186482/cs/38975/

Special Series (cont)

sin(x)	$\Sigma(-1)^n x^{2n+1}/(2n+1)!$	x-x ³ /3!+x ⁵ /5!-x ⁷ /7!+x ⁹ /9!	R=∞, I=(-∞,∞)
cos(x)	$\Sigma(-1)^n x^{2n}/(2n)!$	$1-x^2/2!+x^4/4!-x^6/6!+x^8/8!$	R=∞, I=(-∞,∞)
(1+x) ^k	$\Sigma(^{k}_{n})x^{n}=\Sigma((k(k-1)(k-2)(k-3)(k-n+1))/n!)x^{n}$	$1+kx+k(k-1)x^2/2!+k(k-1)(k-2)x^3/3!+k(k-1)(k-2)(k-3)x^4/4!+$	R=1

Taylor's Inequality $|R_n(x)| \le M|x-a|^{n+1}/(n+1)!$, where M is a constant such that $|f^{(n+1)}(x)| \le M$ for all $|x-a| \le d$

For the series listed, assume each series to be an infinite series starting at n=0: $\Sigma^{\circ}_{n=0}$ = Σ as previously defined

The Radius of Convergence, R, is typically found by using the Ratio Test or Root Test

 $\binom{k}{n}$ is the "binomial coefficient" (read as "k choose n"). $\binom{k}{n} = \frac{k!}{(n!(k-n)!)}$

f⁽ⁿ⁾ means "the nth derivative of the function f"

n!=n(n-1)!=n(n-1)(n-2)!=n(n-1)(n-2)(n-3)!=...

n! = n(n-1)(n-2)(n-3)...*3*2*1

0!=1, 1!=1

Areas of Functions

Between	\int_a^b ((top function)-	
two	(bottom function))dA	
functions		
Enclosed	$\frac{1}{2}\int_{a}^{b} f(\theta)^{2} d\theta$	
by a		
polar		
function		
Between	½∫a ^b ((outer polar	
two polar	function) ² -(inner	
functions	polar function) 2)d θ	
Area enclos	sed by a polar	
function is with respect to the		
pole, which is the origin		
	-	

Volumes of Solids of Revolution

Average value of a function on an interval: $f_{avg}=1/(b-a)\int_a^b$

f(x)dx

Disk	π∫a ^b (radius) ² dr
Washer	$\pi \int_a^b ((outer radius)^2)^2$
	- (inner radius)) ² dr
Cylind-	2π∫a ^b (radius)(hei-
rical	ght)dr
Shell	

Disk: slices are perpendicular and connected to axis of rotation Washer: slices are perpendicular and disconnected to axis of rotation

Cylindrical Shells: slices are parallel to axis of rotation

Arc Lengths

Surface Areas

Function revolved about an axis	2π∫ _a ^b (radius)(Arc Length component)ds
Function revolved about y-axis	$2\pi \int_a^b x \sqrt{1+}$ $(f(x))^2) dx$
Function revolved about x-axis	$2\pi \int_{a}^{b} y\sqrt{1+}$ $(g'(y))^{2})dy$
Parametric function of t revolved about y-axis	$2\pi \int_{a}^{b} f(x) \sqrt{((x'(t))^{2} + (y'(t))^{2})} dt$
Parametric function of t	$2\pi \int_{a}^{b} g(y)\sqrt{((x'(t))^{2}} +$

f'(x)=dy/dx, g'(y)=dx/dy, x'(t)=-dx/dt, and y'(t)=dy/dt

 $(y'(t))^2)dt$

Integration by Parts

revolved about

Indefinite	∫udv=uv-∫vdu
Integral	
Definite	$\int_a^b udv = uv _a^b$ -
Integral	∫a ^b vdu

Integration by Parts is used to integrate integrals that have components multiplied together in their simplest form, often referred to as a "product rule for integrals"

Choosing the "dv" term depends

Trigonometric Integrals

https://cheatography.com/cross
ant/cheat-sheets/integral-trig-
onometry/

Integration by Partial Fractions

integration by Partial Fractions	with bounds at infinity (Type 1)
	(PX+6) at least one discontinuity on (rx+9) integrated region (Type 2)
, , , , , , , , , , , , , , , , , , , ,	(px+q) + (px Conic Sections
$(rx^2 + sx + t)) (B$	(px+均ttps://cheatography.com/cross- x+C)如何论Aeat-sheets/conic-sections/

 $(ax^3+bx^2+cx+d)/(rx^2+sx+t)^2$ (Ax+E

Parametric Curves and Polar Functions

Improper Integrals (cont)

Improper Integrals are integrals

lim t->±∞

 $f(x)dx=\pm\infty$ or DNF

Divergence

of $\int f(x)dx$

 $(Cx+D)/(rx^2+sx+t)^2$

For numerator/denominator N/D, partial fractions simplify integrals of polynomial rational expressions where deg(N) < deg(D), and a fully-factored D, into a sum of simpler fractions. If $deg(N) \ge deg(D)$, then polynomial long division must be used beforehand.

A non-repeated denominator factor of degree n gets a partial fraction with numerator degree n-1.

An irreducible denominator factor repeated p times (like (ax+b)^p) of degree n gets p partial fractions, all with numerator-degree n-1.

Function	$\int_{a}^{b} \sqrt{(1+}$ $(f'(x))^{2}) dx$
Parametric Function	$\int_{a}^{b} \sqrt{((x'(t))^{2}+}$ $(y'(t))^{2})dt$
Polar Function	$\int_{a}^{b} \sqrt{(r(\theta)^{2} + (r'(\theta))^{2})} d\theta$

For standard functions: f'(x)=dy/dx

For parametric functions: x'(t)=dx/dt and y'(t)=dy/dt

For polar functions: $r'(\theta)=dr/d\theta$

on what will simplify the integral the best, while being relatively simple to integrate

The constant of integration does not need to be inserted until the integral has been fully simplified

Improper Integrals	
$\int_{a}^{\infty} f(x) dx$	$\lim_{t\to\infty}\int_a^t f(x)dx$
$\int_{-\infty}^{b} f(x) dx$	$lim_{t \to -\infty} \int_t^b f(x) dx$
$\int_{-\infty}^{\infty} f(x) dx$	$\begin{aligned} &\lim_{t\to -\infty} \int_t^c f(x) dx \\ &+ \lim_{t\to \infty} \int_X^t f(x) dx \end{aligned}$
Convergence of $\int f(x)dx$	$\label{eq:tau-def} \begin{aligned} &\lim {}_{t\text{-}>\pm\infty} f(x) dx\text{=}L, \\ &\text{where L is a} \\ &\text{constant} \end{aligned}$

Parametric Curve C as a function of Parameter t	(x,y)=(f(t),g(t)) for t on [a,b]
Slope at a given point	dy/dx=- $(dy/dt)/(dx/dt)$
Second derivative	$d^2y/dx^2 = (dy/d-t)/(dx/dt)^2$
Polar Curve C as a function of Parameters r and θ	$(r,\theta)=(r,\theta\pm2-$ $\pi n)=(-r,\theta\pm\pi n)$
Slope at a given point	$dy/dx= (dy/d\theta)/(dx/d\theta)$
Cartesian/Rectangular to Polar coordinates	$x=rcos(\theta),$ $y=rsin(\theta)$
Polar to Cartesian/Rectangular coordinates	$r^2=x^2+y^2$ or $r=\sqrt{(x^2+y^2)}$, $tan\theta=y/x$ or $\theta=arctan(y/x)$

 $(dx/dt)\neq 0$, $(dx/d\theta)\neq 0$

Integral Approximations and Error Bounds

Midpoint $\Delta x(f(\bar{x}_1)+f(\bar{x}_2)+f(\bar{x}_3)+...+f(\bar{x}_n))$ Rule $_{1})+f(\bar{x}_{n}))$

By **CROSSANT** (CROSSANT) cheatography.com/crossant/

Published 28th May, 2023. Last updated 20th October, 2025. Page 4 of 5.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

Calculus II Cheat Sheet

by CROSSANT (CROSSANT) via cheatography.com/186482/cs/38975/

Integral Approximations and Error Bounds (cont)

Trapez- $(\Delta x/2)(f(x_1)+2f(x_2)+2f(x_3)+...+2f(x_{n-1})$

oidal Rule $_{1})+f(x_{1}))$

Simpson's $(\Delta x/3)$

Rule $(f(x_1)+4f(x_2)+2f(x_3)+4f(x_4)+2f(x_5))+...+$

 $2f(x_{n-2})+4f(x_{n-1})+f(x_n)$

 $|E_m| \le k(b-a)^3/24n^2$, $k=f''(x)_{max}$ on [a,b] Midpoint

Rule Error Bound

 $|E_t| \le k(b-a)^3/12n^2$, $k=f''(x)_{max}$ on [a,b] Trapez-

oidal Rule

Error Bound

 $|E_{s}| \le k(b-a)^{5}/180n^{4}$, $k=f^{(4)}(x)_{max}$ on Simpson's

Rule Error

Bound

Integral Approximations are typically used to evaluate an integral that is very difficult or impossible to integrate

 $\Delta x = (b-a)/n$

 $\bar{x}=(x_{i-1}+x_i)/2$, the average/median of two points x_{i-1} and x_i

Simpson's Rule can only be used if the given n is even, that is, n=2k for some integer k

In order of most accurate to least accurate approximation: Simpson's Rule, Midpoint Rule, Trapezoidal Rule, Left/Right endpoint approximation

By CROSSANT (CROSSANT) cheatography.com/crossant/

Published 28th May, 2023. Last updated 20th October, 2025. Page 5 of 5.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com