Cheatography

Calculus II Cheat Sheet by CROSSANT (CROSSANT) via cheatography.com/186482/cs/38975/

Series				
Series Type	General Summation	Convergence	Divergence	Notes
Infinite Series	$\Sigma a_n = \Sigma_{n=k}^{\infty} a_n$, where k is some whole number (k = {0, 1, 2,}) for which a_n is well-defined	Converges if lim $_{n \rightarrow \infty} S_n = L$, where L is finite	Diverges if $\lim_{n\to\infty} 1 -\infty$ S _n = ∞ or DNE	S _n is the partial sum of the series: S _n =a ₁ +a ₂ +a ₃ +a ₄ ++a _{n-1} +a _n
Harmonic Series	Σ1/n	Never converges	Always diverges	The alternating version of this series $(\Sigma(-1)^{n+1}/n)$ converges, and $\Sigma 1/n$ is a P-Series with p=1
Geometric Series	$\Sigma_{n=0}^{\infty} ar^{n} = \Sigma_{n=1}^{\infty} ar^{n-1}$, where a is the first term of the series, and r is the common ratio between terms	Converges if r <1	Diverges if r ≥1	If the series converges, its sum is S=a/(1-r)
P-Series	$\Sigma 1/n^p$, where p is a positive number	Converges if p>1	Diverges if p≤	51
Altern- ating Series	$\Sigma(-1)^{n}b_{n}, \Sigma(-1)^{n+1}b_{n}, \text{ or } \Sigma(-1)^{n-1}b_{n}$	Converges if $\lim_{n\to\infty} b_n = 0$ and b _n is a decreasing sequence $(b_{n+1} \le b_n \text{ for all } n)$	Cannot show	divergence, inconclusive
Telesc- oping Series	Σ(b _n -b _{n+1})	Converges if lim $_{n \rightarrow \infty} S_n = L$, where L is finite	Diverges if lim $_{n-\infty}$ $S_{n}=\infty$ or DNE	S_n is the partial sum of the series: $S_n = \Sigma^n{}_{i=1}(b_i \text{-} b_{i+1}) \text{ where } n \text{ is finite}$

Alternating Series Estimation Theorem: If $S_n = \Sigma^n_{i=1}(-1)^i b_i$ or $\Sigma^n_{i=1}(-1)^{i-1} b_i$ is the sum of an alternating series that converges, then $|R_n| = |S-S_n|$ ≤bn+1

Trigonometric functions like $cos(n\pi)$ or $sin(n\pi+\pi/2)$ act as sign alternators, like $(-1)^n$

The Alternating Series Test (AST) checks the limit, but since the AST only concludes convergence, we explicitly apply the Test For Divergence (albeit, redundantly) if the limit fails (even though it checks the same limit)

Series Tests	5				
Test Type		Typical series to use te	st Convergence	Divergence	Notes
Test for Divergence		Σa _n	Cannot show convergence, inconclusive	gence, inconclusive Diverges if $\lim_{n\to\infty} a_n \neq 0$ or DN	
C	By CROS cheatogra	SANT (CROSSANT) phy.com/crossant/	Published 28th May, 2023. Last updated 10th April, 2025.	Sponsored by Readable Measure your website re	. com eadability!

Page 1 of 5.

https://readable.com

Calculus II Cheat Sheet

Cheatography

Calculus II Cheat Sheet	
by CROSSANT (CROSSANT)	via cheatography.com/186482/cs/38975/

Series Tests (cont)				
Integral Test	$a_n \equiv f(n)$, which is a positive, continuous, decreasing function on the interval [k, ∞), usually with clearly-integrable functions	Converges if $\int_k^{\infty} f(n) dn$ converges	Diverges if ∫ _k	[∞] f(n)dn diverges
(Direct) Comparison Test	a _n and b _n are positive-termed (a _n ≥0 and b _n ≥0 for all n) and a _n ≤b _n for all n	Σa _n converges if Σb _n converges	Σb _n diverges if Σa _n diverges	Inconclusive if b _n diverges in proving convergence, or a _n converges in proving divergence
Limit Comparison Test	a_{n} and b_{n} are positive-termed, and lim $_{n\text{-}>\infty}$ $a_{n}/b_{n}\text{=}c,$ where 0 <c<<math display="inline">\infty</c<<math>	$\Sigma a_n \text{ converges}$ $\Leftrightarrow \Sigma b_n$ converges	Σa_n diverges $\Leftrightarrow \Sigma b_n$ diverges	Inconclusive if c=0, c= ∞ , or c DNE
Ratio Test	$\Sigma a_{n}^{},$ usually with n! terms, product terms, or $\left(a_{n}^{}\right)^{n}$	Absolutely converges if lim _{n->∞} a _{n+1} /a _n <1	Diverges if lim _{n->∞} a _{n+1} /a _n >1	Inconclusive if $\lim_{n\to\infty} a_{n+1}/a_n $ =1
Root Test	Σa _n , usually with (a _n) ⁿ	Absolutely converges if lim n->∞ a _N ^{1/n} <1	Diverges if lim _{n->∞} a _n ^{1/n} >1	Inconclusive if $\lim_{n\to\infty} a_n ^{1/n}=1$
Absolute/Condit- ional Convergence Classification	Σa _n	Absolutely converges if Σ a _n converges	Diverges if Σa _n diverges	Conditionally converges if $\Sigma a_n $ diverges, but Σa_n converges

For the series listed, assume each series to be an infinite series starting at n=k: $\Sigma_{n=k}^{\circ}=\Sigma$ as previously defined

If a test is inconclusive, use another test

The symbol [\leftrightarrow] represents the relationship "if and only if" (often abbreviated to "iff"), meaning both sides of the statement must be true at the same time, or false at the same time

Special Series			
Series	Summation Form	First five terms	Radius & Interval of Convergence
Power Series centered at a	ΣC _n (x-a) ⁿ	$C_0+C_1(x-a)+C_2(x-a)^2+C_3(x-a)^3+C_4(x-a)^4+$	(a-R, a+R), [a-R, a+R), (a-R, a+R], or [a-R, a+R]
Taylor Series centered at a	Σf ⁽ⁿ⁾ (a)(x-a) ⁿ /n!	$\begin{array}{l} f(a)+f'(a)(x-a)+f''(a)(x-a)^{2}/2!+f'''(a)(x-a)^{3}/3!+f^{(4)}(a)(x-a)^{4}/4!+ \end{array}$	x-a <r< td=""></r<>
Maclaurin Series (Taylor Series centered at 0)	$\Sigma f^{(n)}(0)(x-0)^n/n!=\Sigma f^{(n)}(0)x^n/n!$	$\begin{array}{l} f(0)+f'(0)x+-\\ f''(0)x^{2/2}!+f'''(0)x^{3/3}!+f^{(4)}(0)x^{4/4}!+ \end{array}$	x <r< td=""></r<>
1/(1-x)	Σx ⁿ	$1+x+x^2+x^3+x^4+$	R=1, I=(-1,1)
By CROSSANT (CRC	SSANT) Publishe	d 28th May, 2023 Spo	posored by Readable com

By **CROSSANT** (CROSSANT) cheatography.com/crossant/

Last updated 10th April, 2025. Page 2 of 5. Sponsored by Readable.com Measure your website readability! https://readable.com

Calculus II Cheat Sheet

Cheatography

by CROSSANT (CROSSANT) via cheatography.com/186482/cs/38975/

Special Series (cont)				
e ^x	Σx ⁿ /n!	$1+x+x^2/2!+x^3/3!+x^4/4!+$	R=∞, I=(-∞,∞)	
ln(1+x)	$\Sigma(-1)^n x^{n+1}/(n+1)$	x-x ² /2+x ³ /3-x ⁴ /4+x ⁵ /5	R=1, I=(-1,1]	
arctan(x)	$\Sigma(-1)^n x^{2n+1}/(2n+1)$	x-x ³ /3+x ⁵ /5-x ⁷ /7+x ⁹ /9	R=1, I=[-1,1]	
sin(x)	$\Sigma(-1)^n x^{2n+1}/(2n+1)!$	x-x ³ /3!+x ⁵ /5!-x ⁷ /7!+x ⁹ /9!	R=∞, I=(-∞,∞)	
cos(x)	$\Sigma(-1)^n x^{2n}/(2n)!$	$1-x^2/2!+x^4/4!-x^6/6!+x^8/8!$	R=∞, I=(-∞,∞)	
(1+x) ^k	$\Sigma(_{n}^{k})x^{n}=\Sigma((k(k-1)(k-2)(k-3)(k-n+1))/n!)x^{n}$	$1+kx+k(k-1)x^2/2!+k(k-1)(k-2)x^3/3!+k(k-1)(k-2)(k-3)x^4/4!+$	R=1	
Taylor's Inequality	R _n (x) ≤M x-a ⁿ⁺¹ /(n+1)!, where M is a consta	nt such that ∣f ⁽ⁿ⁺¹⁾ (x) ≤M for all x-a ≤d		

For the series listed, assume each series to be an infinite series starting at n=0: $\Sigma_{n=0}^{\circ}=\Sigma$ as previously defined

The Radius of Convergence, R, is typically found by using the Ratio Test or Root Test

 $\binom{k}{n}$ is the "binomial coefficient" (read as "k choose n"). $\binom{k}{n} = \frac{k!}{(n!(k-n)!)}$

 $f^{(n)}$ means "the nth derivative of the function f"

n!=n(n-1)!=n(n-1)(n-2)!=n(n-1)(n-2)(n-3)!=...

n! = n(n-1)(n-2)(n-3)...*3*2*1

0!=1, 1!=1

Areas of Functions		Surface Areas		Trigonometric Integrals		Improper Integrals (cont)	
Between two functions	\int_{a}^{b} ((top function)- (bottom function))dA	Function revolved about an axis	2π∫a ^b (radiu- s)(Arc Length compon-	https://cheatogr ant/cheat-sheet onometry/	raphy.com/cross- ts/integral-trig-	Conver- gence of ∫f(x)dx	$\lim_{t\to\pm\infty} f(x)dx=L,$ where L is a constant
Enclosed by a	$\frac{1}{2}\int_{a}^{b}f(\theta)^{2}d\theta$	Function	ent)ds 2π∫a ^b x√(1+	Integration by F	Partial Fractions	Divergence of ∫f(x)dx	$\lim_{t\to \pm\infty} f(x)dx=\pm\infty \text{ or DNE}$
function		revolved about y-axis	(f'(x)) ²)dx	(px+q)/((x-a) (x-b))	A/(x-a) + B/(x-b)	Improper Inte	grals are integrals
Between two polar	$\frac{1}{2}\int_{a}^{b}$ ((outer polar function) ² -(inner	Function revolved about	2π∫a ^b y√(1+ (g'(y)) ²)dy	(px+q)/(x-a) ²	A/(x-a) + B/(x- a) ²	or at least on the integrated	at infinity (Type 1) e discontinuity on d region (Type 2)
functions	polar function) ²)dθ	x-axis		(px²+qx+r)/(-	A/(x-a) + B/(x-b)		
Area enclosed by a polar function is with respect to the pole, which is the origin		Parametric function of t revolved about y-axis	$2\pi \int_{a}^{b} f(x)\sqrt{((x'(t))^{2}+(y'(t))^{2})} dt$	(x-a)(x-b)(x-	+ C/(x-c)	Conic Section	าร
				(px ² +qx+r)/((x-a) ² (x-b))	$A/(x-a) + B/(x-a)^2 + C/(x-b)$	https://cheato ant/cheat-she	ography.com/cross- eets/conic-sections/
Average value of a function: $f_{avg} = 1/(b-a) \int_{a}^{b} f(x) dx$		Parametric function of t	$2\pi \int_{a}^{b} q(y) d((x'(t))^{2} +$	(px ² +qx+r)/((-	A/(x-a) + Bx+C/(x ² +bx+c)	Parametric C	urves and Polar
		revolved about	$(y'(t))^2)dt$	(x ² +bx+c))	DX • 0/(X • DX • 0)	T uncuons	
Volumes of	Solids of Revolution	x-axis		$\int 1/(a^2+x^2) dx$	(1/a)arctan(-		
Disk	π∫a ^b (radius) ² dV	f'(x)=dy/dx, g'(y)=	dx/dy, x'(t)=-	x/a)+C			
Washer	$\pi \int_{a}^{b} (\text{outer radius})^2$ -	dx/dt, and y'(t)=dy/dt Integration by Parts		Integration by Partial Fractions is used to simplify integrals of			
	(inner radius) ² dV						
Cylind-	2π∫a ^b (radius)(hei- ght)dV	Indefinite ∫u Integral	udv=uv-∫vdu	into simpler fractions with a factored, irreducible denomi-			
For Cylindrical Shelle: radius-y		Definite $\int_a^b u dv = u v _a^b -$		nator			
or y, and height= $f(x)$ or $g(y)$		Integral ∫ _a	a ^b vdu	The degree (hid	ghest power) of		
		Integration by Pa	rts is used to	the numerator's	polynomial must		
Arc Lengths		integrate integrals	s that have	be less than the	e degree of the		

denominator's polynomial,

otherwise, polynomial long

components multiplied together in their simplest form, often referred to as a "product rule for

Function	∫a ^b √(1+
	$(f'(x))^2)dx$
Parametric	$\int_a{}^b \sqrt{((x'(t))^2} +$
Function	(y'(t)) ²)dt
Polar	$\int_{a}^{b} \sqrt{(r(\theta)^{2}+$
Function	(r'(θ)) ²)dθ

For standard functions: f'(x)=-

For parametric functions: x'(t)=-

For polar functions: $r'(\theta)=dr/d\theta$

dx/dt and y'(t)=dy/dt

dy/dx

integrals"

Choosing the "dv" term depends on what will simplify the integral the best, while being relatively simple to integrate

The constant of integration does not need to be inserted until the integral has been fully simplified division must be used before converting the expression into partial fractions

Improper Integrals				
∫∞a	lim $_{t \rightarrow \infty} \int_{a}^{t} f(x) dx$			
f(x)dx				
∫b∞	lim $_{t \rightarrow -\infty} \int_{t}^{b} f(x) dx$			
f(x)dx				
∫°° - ∞	$\lim_{t\to -\infty} \int_t^c f(x) dx + \lim_{t\to -\infty} \int_t^c f(x) dx$			
f(x)dx	$_{t \to \infty} \int_{X}^{t} f(x) dx$			

Parametric Curve C as a function of Parameter t	(x,y)=(f(t),g(t)) for t on [a,b]		
Slope at a given point	dy/dx=- (dy/dt)/(dx/dt)		
Second derivative	$d^2y/dx^2=(dy/d-t)/(dx/dt)^2$		
Polar Curve C as a function of Parameters r and θ	(r,θ)=(r,θ±2- πn)=(-r,θ±πn)		
Slope at a given point	dy/dx=- (dy/dθ)/(dx/dθ)		
Cartesian/Re- ctangular to Polar coordi- nates	x=rcos(θ), y=rsin(θ)		
Polar to Cartesian/Re- ctangular coordinates	$r^2 = x^2 + y^2$ or $r = \sqrt{(x^2 + y^2)},$ $tan \theta = y/x$ or $\theta = \arctan(y/x)$		
(dx/dt)≠0, (dx/dθ)≠0			

By **CROSSANT** (CROSSANT) cheatography.com/crossant/

Published 28th May, 2023. Last updated 10th April, 2025. Page 4 of 5. Sponsored by Readable.com Measure your website readability! https://readable.com

Cheatography

Integral Approximations and Error Bounds				
Midpoint Rule	$\Delta x(f(\bar{x}_1)+f(\bar{x}_2)+f(\bar{x}_3)+$	$+f(\bar{x}_{n-1})+f(\bar{x}_n))$		
Trapez- oidal Rule	$(\Delta x/2)(f(x_1)+2f(x_2)+2f(x_2)+2f(x_1)+f(x_1))$	f(x ₃)++2f(x _n -		
Simpson's Rule	$(\Delta x/3)$ (f(x ₁)+4f(x ₂)+2f(x ₃)+4 2f(x _{n-2})+4f(x _{n-1})+f(x _n	4f(x ₄)+2f(x ₅))++ ₁))		
Midpoint Rule Error Bound	E _m ≤k(b-a) ³ /24n ² , k=	=f"(x) _{max} on [a,b]		
Trapez- oidal Rule Error Bound	E _t ≤k(b-a) ³ /12n ² , k=f	"(x) _{max} on [a,b]		
Simpson's Rule Error Bound	E _S ≤k(b-a) ⁵ /180n ⁴ , k [a,b]	=f ⁽⁴⁾ (x) _{max} on		
Integral Approximations are typically used to evaluate an integral that is very difficult or impossible to integrate				
$\Delta x=(b-a)/n$ $\bar{x}=(x_{i-1}+x_i)/2$, the average/m- edian of two points x_{i-1} and x_i				
Simpson's Rule can only be used if the given n is even, that is, n=2k for some integer k				
In order of most accurate to least accurate approximation: Simpson's Rule, Midpoint Rule, Trapezoidal Rule, Left/Right endpoint approximation				

By **CROSSANT** (CROSSANT) cheatography.com/crossant/

Published 28th May, 2023. Last updated 10th April, 2025. Page 5 of 5. Sponsored by **Readable.com** Measure your website readability! https://readable.com