\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{CROSSANT (CROSSANT)} \pdfinfo{ /Title (calculus-derivatives-and-differentiation.pdf) /Creator (Cheatography) /Author (CROSSANT (CROSSANT)) /Subject (Calculus Derivatives and Differentiation Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{5A828F} \definecolor{LightBackground}{HTML}{F4F7F8} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Calculus Derivatives and Differentiation Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{CROSSANT (CROSSANT)} via \textcolor{DarkBackground}{\uline{cheatography.com/186482/cs/43207/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}CROSSANT (CROSSANT) \\ \uline{cheatography.com/crossant} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 26th April, 2024.\\ Updated 16th October, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Notation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Name} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Leibniz/Fraction Notation} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Lagrange/Prime Notation} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Newton/Dot Notation} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Euler/D-Notation} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{n ∈ ℕ\textasciitilde{}1\textasciitilde{} = \{1,2,3,4,5,...\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.872 cm} x{1.584 cm} x{1.872 cm} x{1.872 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Derivative Rules}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Formal/Limit} \seqsplit{Definition} of a \seqsplit{Derivative} & \seqsplit{f'(x)=lim} \textasciitilde{}h-\textgreater{}0\textasciitilde{} \seqsplit{(f(x+h)-f(x))/h} & & \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} Limit \seqsplit{Definition} of the \seqsplit{Derivative} at a point & \seqsplit{f'(a)=lim} \textasciitilde{}h-\textgreater{}0\textasciitilde{} \seqsplit{(f(a+h)-f(a))/h} & f'(a)=lim \textasciitilde{}x-\textgreater{}a\textasciitilde{} \seqsplit{(f(x)-f(a))/(x-a)} & \tn % Row Count 9 (+ 5) % Row 2 \SetRowColor{LightBackground} {\bf{Linearity 1: \seqsplit{Constant-Multiple} Rule}} & {\bf{d/dx (kf(x))}} & {\bf{k*d/dx (f)}} & {\bf{kf'}} \tn % Row Count 13 (+ 4) % Row 3 \SetRowColor{white} {\bf{Linearity 2: \seqsplit{Sum/Difference} Rule}} & {\bf{d/dx (f(x)±g(x))}} & {\bf{d/dx (f) ± d/dx (g)}} & {\bf{f'±g'}} \tn % Row Count 17 (+ 4) % Row 4 \SetRowColor{LightBackground} {\bf{Product Rule}} & {\bf{d/dx (f(x)*g(x))}} & {\bf{f'g+fg'}} & \tn % Row Count 20 (+ 3) % Row 5 \SetRowColor{white} \seqsplit{Multi-Product} Rule & d/dx \seqsplit{(p(x)*q(x)*r(x)*s(x)*}...) & p'qrs... + pq'rs... + pqr's... + pqrs'... + ... & \seqsplit{pqrs...*(p'/p} + q'/q + r'/r + s'/s + ...) \tn % Row Count 25 (+ 5) % Row 6 \SetRowColor{LightBackground} Quotient Rule & d/dx \seqsplit{(f(x)/g(x))} & (f'g-fg')/g\textasciicircum{}2\textasciicircum{} & g(x)≠0, quotients can be rewritten into products with \seqsplit{sign-flipped} exponents \tn % Row Count 33 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{1.872 cm} x{1.584 cm} x{1.872 cm} x{1.872 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Derivative Rules (cont)}} \tn % Row 7 \SetRowColor{LightBackground} {\bf{Chain Rule}} & {\bf{d/dx (f(g(x)))}} & {\bf{f'(g)g'}} & \tn % Row Count 3 (+ 3) % Row 8 \SetRowColor{white} {\bf{Multi-Chain Rule}} & {\bf{d/dx \seqsplit{(p(q(r(s(}...)))))}} & {\bf{p'(q(r(s(...))))*q'(r(s(...)))*r'(s(...))*s'(...)*...}} & \tn % Row Count 10 (+ 7) % Row 9 \SetRowColor{LightBackground} {\bf{First \seqsplit{Fundamental} Theorem of Calculus (FTC I)}} & {\bf{d/dx (∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}x\textasciicircum{} f(t)dt)}} & {\bf{f(x)}} & {\bf{Derivatives and integrals are inverses of each other}} \tn % Row Count 16 (+ 6) % Row 10 \SetRowColor{white} FTC I Chain Rule 1 & d/dx (∫\textasciitilde{}a\textasciitilde{}\textasciicircum{}v(x)\textasciicircum{} f(t)dt) & f(v)v' & \tn % Row Count 20 (+ 4) % Row 11 \SetRowColor{LightBackground} FTC I Chain Rule 2 & d/dx (∫\textasciitilde{}u(x)\textasciitilde{}\textasciicircum{}v(x)\textasciicircum{} f(t)dt) & \seqsplit{f(v)v'-f(u)u'} & \tn % Row Count 24 (+ 4) % Row 12 \SetRowColor{white} Summation Rule & d/dx \seqsplit{(Σf(x))} & Σf'(x) & The summation must be within its interval of \seqsplit{convergence} \tn % Row Count 30 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}----} \SetRowColor{LightBackground} \mymulticolumn{4}{x{8.4cm}}{a and k are constants \newline f, g, p, q, r, s, u, and v are functions of x such that f=f(x), g=g(x), p=p(x), q=q(x), r=r(x), s=s(x), u=u(x), and v=v(x), unless otherwise shown} \tn \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Derivatives of Algebraic Functions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Rule} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Constant}}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Power}}} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Natural Exponential}}} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Natural Logarithm}}} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{General Exponential} \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{General Logarithm} \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Absolute Value} \tn % Row Count 8 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Function-Power-Function} \tn % Row Count 9 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{k is a constant \newline f=f(x), g=g(x), and u=u(x) are all functions of the variable x \newline m, n ∈ ℕ\textasciitilde{}1\textasciitilde{} = \{1,2,3,4,5,...\} \newline Γ(x) is the gamma function, which defines factorials for negative/non-integer numbers \newline x! = Γ(x+1) \newline {\bf{n!=n(n-1)!=n(n-1)(n-2)!=n(n-1)(n-2)(n-3)!=...}} \newline {\bf{n! = n(n-1)(n-2)(n-3)...*3*2*1}} \newline {\bf{0!=1, 1!=1}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Derivatives of Trigonometric Functions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Standard Trigonometric} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{d/dx (sin(x))}}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{d/dx (cos(x))}}} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{d/dx (tan(x))}}} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{d/dx (csc(x))} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{d/dx (sec(x))}}} \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{d/dx (cot(x))} \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{d\textasciicircum{}n\textasciicircum{}/dx\textasciicircum{}n\textasciicircum{} (sin(x)) = sin(x+nπ/2) \newline d\textasciicircum{}n\textasciicircum{}/dx\textasciicircum{}n\textasciicircum{} (cos(x)) = cos(x+nπ/2) \newline {\bf{sinh(x) = (e\textasciicircum{}x\textasciicircum{}-e\textasciicircum{}-x\textasciicircum{})/2}} \newline {\bf{cosh(x) = (e\textasciicircum{}x\textasciicircum{}+e\textasciicircum{}-x\textasciicircum{})/2}} \newline arcsinh(x) = ln(x+√(x\textasciicircum{}2\textasciicircum{}+1)) \newline arccosh(x) = ln(x+√(x\textasciicircum{}2\textasciicircum{}-1)), x≥1} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.84 cm} x{4.16 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Polynomial Derivative Examples}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{d/dx (x)}} & {\bf{1}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\bf{d/dx (x\textasciicircum{}2)}} & {\bf{2x}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} {\bf{d/dx (x\textasciicircum{}3)}} & {\bf{3x\textasciicircum{}2\textasciicircum{}}} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} d/dx (x\textasciicircum{}4) & 4x\textasciicircum{}3\textasciicircum{} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} {\bf{d/dx (1/x)}} & {\bf{-1/x\textasciicircum{}2\textasciicircum{}}} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} {\bf{d/dx (-1/x\textasciicircum{}2\textasciicircum{})}} & {\bf{2/x\textasciicircum{}3\textasciicircum{}}} \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} d/dx (2/x\textasciicircum{}3\textasciicircum{}) & -6/x\textasciicircum{}4\textasciicircum{} \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} d/dx (-6/x\textasciicircum{}4\textasciicircum{}) & 24/x\textasciicircum{}5\textasciicircum{} \tn % Row Count 8 (+ 1) % Row 8 \SetRowColor{LightBackground} {\bf{d/dx (√x)}} & {\bf{1/(2√x)}} \tn % Row Count 9 (+ 1) % Row 9 \SetRowColor{white} {\bf{d/dx (x\textasciicircum{}1/3\textasciicircum{})}} & {\bf{1/(3x\textasciicircum{}2/3\textasciicircum{})}} \tn % Row Count 10 (+ 1) % Row 10 \SetRowColor{LightBackground} d/dx (x\textasciicircum{}1/4\textasciicircum{}) & 1/(4x\textasciicircum{}3/4\textasciicircum{}) \tn % Row Count 11 (+ 1) % Row 11 \SetRowColor{white} d/dx (x\textasciicircum{}3/2\textasciicircum{}) & 3√x/2 \tn % Row Count 12 (+ 1) % Row 12 \SetRowColor{LightBackground} d/dx (x\textasciicircum{}5/3\textasciicircum{}) & 5x\textasciicircum{}2/3\textasciicircum{}/3 \tn % Row Count 13 (+ 1) % Row 13 \SetRowColor{white} {\bf{d/dx (x\textasciicircum{}-√2-3\textasciicircum{})}} & {\bf{(-√2-3)x\textasciicircum{}-√2-4\textasciicircum{}}} \tn % Row Count 15 (+ 2) % Row 14 \SetRowColor{LightBackground} d/dx (1/(1+x)) & -1/(1+x)\textasciicircum{}2\textasciicircum{} \tn % Row Count 16 (+ 1) % Row 15 \SetRowColor{white} d/dx (-1/(1+x)\textasciicircum{}2\textasciicircum{}) & 2/(1+x)\textasciicircum{}3\textasciicircum{} \tn % Row Count 17 (+ 1) % Row 16 \SetRowColor{LightBackground} d/dx (-1/(1-x)) & -1/(1-x)\textasciicircum{}2\textasciicircum{} \tn % Row Count 18 (+ 1) % Row 17 \SetRowColor{white} d/dx (-1/(1-x)\textasciicircum{}2\textasciicircum{}) & -2/(1-x)\textasciicircum{}3\textasciicircum{} \tn % Row Count 19 (+ 1) % Row 18 \SetRowColor{LightBackground} d/dx (√(5x+1)) & 5/(2√(4x+1)) \tn % Row Count 20 (+ 1) % Row 19 \SetRowColor{white} d/dx (√(x\textasciicircum{}5\textasciicircum{}+1)) & 5x\textasciicircum{}4\textasciicircum{}/(2√(x\textasciicircum{}5\textasciicircum{}+1)) \tn % Row Count 21 (+ 1) % Row 20 \SetRowColor{LightBackground} d/dx ((2x\textasciicircum{}2\textasciicircum{}+5)\textasciicircum{}9\textasciicircum{}) & 36x(2x\textasciicircum{}2\textasciicircum{}+5)\textasciicircum{}8\textasciicircum{} \tn % Row Count 22 (+ 1) % Row 21 \SetRowColor{white} {\bf{d/dx (1)}} & {\bf{0}} \tn % Row Count 23 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.92 cm} x{4.08 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Special/Other Derivative Examples}} \tn % Row 0 \SetRowColor{LightBackground} d/dx (e\textasciicircum{}x\textasciicircum{}sin(x)) & e\textasciicircum{}x\textasciicircum{}sin(x)+e\textasciicircum{}x\textasciicircum{}cos(x) \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} d/dx (e\textasciicircum{}x\textasciicircum{}cos(x)) & e\textasciicircum{}x\textasciicircum{}cos(x)-e\textasciicircum{}x\textasciicircum{}sin(x) \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} d/dx (sin\textasciicircum{}x\textasciicircum{}(x)) & sin\textasciicircum{}x\textasciicircum{}(x)(ln(sin(x))+xcot(x)) \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} d/dx (sin(x)\textasciicircum{}cos(x)\textasciicircum{}) & sin(x)\textasciicircum{}cos(x)\textasciicircum{}(cos\textasciicircum{}2\textasciicircum{}(x)csc(x)-sin(x)ln(sin(x))) \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} d/dx (ln(1/(1-x))) & 1/(1-x) \tn % Row Count 10 (+ 1) % Row 5 \SetRowColor{white} {\bf{d/dx (ln(x\textasciicircum{}3\textasciicircum{}+7x+12))}} & {\bf{(3x\textasciicircum{}2\textasciicircum{}+7)/(x\textasciicircum{}3\textasciicircum{}+7x+12)}} \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} d/dx (ln(e\textasciicircum{}3x\textasciicircum{}tan(x\textasciicircum{}3\textasciicircum{}))) & 3+(3x\textasciicircum{}2\textasciicircum{}sec\textasciicircum{}2\textasciicircum{}(x\textasciicircum{}3\textasciicircum{}))/(tan(x\textasciicircum{}3\textasciicircum{})) \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} {\bf{d/dx (1+k+t+√2+cos(a)+e+π+ln(3))}} & {\bf{0}} \tn % Row Count 17 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4.4 cm} x{3.6 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Trigonometric Derivative Examples}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{d/dx (-sin(x))}} & {\bf{-cos(x)}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\bf{d/dx (-cos(x))}} & {\bf{sin(x)}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} {\bf{d/dx (sin(2x))}} & {\bf{2cos(2x)}} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} {\bf{d/dx (cos(2x))}} & {\bf{-2sin(2x)}} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} d/dx (sin\textasciicircum{}2\textasciicircum{}(x)) & 2sin(x)cos(x) \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} d/dx (cos\textasciicircum{}2\textasciicircum{}(x)) & -2cos(x)sin(x) \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} {\bf{d/dx (arctan(3x))}} & {\bf{3/(1+9x\textasciicircum{}2\textasciicircum{})}} \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} d/dx (sin(sin(x))) & cos(x)cos(sin(x)) \tn % Row Count 8 (+ 1) % Row 8 \SetRowColor{LightBackground} d/dx (sin(arccos(x))) & -x/√(1-x\textasciicircum{}2\textasciicircum{}) \tn % Row Count 9 (+ 1) % Row 9 \SetRowColor{white} {\bf{d/dx (sin(k))}} & {\bf{0}} \tn % Row Count 10 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.2 cm} x{4.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Exponential Derivative Examples}} \tn % Row 0 \SetRowColor{LightBackground} d/dx (xe\textasciicircum{}x\textasciicircum{}) & e\textasciicircum{}x\textasciicircum{}+xe\textasciicircum{}x\textasciicircum{} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\bf{d/dx (e\textasciicircum{}2x\textasciicircum{})}} & {\bf{2e\textasciicircum{}2x\textasciicircum{}}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} {\bf{d/dx (e\textasciicircum{}x$^{\textrm{2}}$\textasciicircum{})}} & {\bf{2xe\textasciicircum{}x$^{\textrm{2}}$\textasciicircum{}}} \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} d/dx (e\textasciicircum{}eˣ\textasciicircum{}) & e\textasciicircum{}x\textasciicircum{}e\textasciicircum{}eˣ\textasciicircum{} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} {\bf{d/dx (x\textasciicircum{}x\textasciicircum{})}} & x\textasciicircum{}x\textasciicircum{}(ln(x)+1) \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} d/dx (2\textasciicircum{}3ˣ\textasciicircum{}) & 2\textasciicircum{}3ˣ\textasciicircum{}*3\textasciicircum{}x\textasciicircum{}*ln(2)*ln(3) \tn % Row Count 8 (+ 2) % Row 6 \SetRowColor{LightBackground} {\bf{d/dx (e\textasciicircum{}k\textasciicircum{})}} & {\bf{0}} \tn % Row Count 9 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{5.28 cm} x{2.72 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Logarithmic Derivative Examples}} \tn % Row 0 \SetRowColor{LightBackground} d/dx (ln(1/x)) & -1/x \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} d/dx (ln(1+x)) & 1/(1+x) \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} d/dx (ln(1-x)) & -1/(1-x) \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} {\bf{d/dx (ln(x\textasciicircum{}2\textasciicircum{}))}} & {\bf{2/x}} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} d/dx (ln(x\textasciicircum{}3\textasciicircum{})) & 3/x \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} d/dx (ln(x\textasciicircum{}4\textasciicircum{})) & 4/x \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} d/dx (xln(x)) & ln(x)+1 \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} d/dx (ln(ln(x))) & 1/(xln(x)) \tn % Row Count 8 (+ 1) % Row 8 \SetRowColor{LightBackground} {\bf{d/dx (ln(k))}} & {\bf{0}} \tn % Row Count 9 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}