
Yet Another JavaScript Cheat Sheet
by crafter7058 via cheatography.com/149534/cs/32482/

What is a program

- Program - a sequence of statements that are executed in a certain
order (by default sequen​tially, from top to bottom).
In synchr​onous programs only one statement is executed at a time.
During the execution of these statements input data is (optio​nally)
received from the outside of program, then through the use of
expres​sions somehow transf​ormed and/or used to create new data,
and then the resulting data is output to the outside of program.
Program also operates on the data that is created during the program
execution.
Data is passed throughout the program by associ​ating it with a
variable and later refere​ncing variable name to access data created
during the previous steps of the program.
Some programs start their execution, do their task and output the
result. After which they terminate (finish). Such programs are
sometimes called scripts. They are usually relatively simple.
Other programs run indefi​netely, until an external command is given
to terminate a program (e.g. 'close' button is pressed).

Values, data types

- Value - a piece of data that a program works with. Always belongs
to one of the types.
- Literal value - value that is created during program execution. For
instance, if you need to add 3 to some value, you would write literal
value 3 in your code in order to perform this operation.
- (Data) Types - different categories of data that are defined by a
progra​mming language. Different languages have different types.
JavaScript has 8 types, of them 7 primitive types and an object type.
Types determine what kind of operations can be performed on values
of that type. For instance a string of text can be converted to lower
case, while two numbers can be multipled by each other.
Performing an invalid (illegal) operation on a value (e.g. trying to
multiply two strings) is a mistake & usually (but in JS not always)
results in an explicit program error.
Values can be converted between types, becoming values of another
type. However not all type conver​sions are possible or make sense.
Number 512 can become a string '512'. But string 'hello' can't
become any meaningful number.
Additi​onally dividing data between types allows progra​mming
language to store data and operate on it more effici​ently. For
instance arrays are optimized to allow very fast iteration of their
elements.
N.B. In JS arrays aren't its own type, but rather a special variety of
objects.

Boolean literals, null, undefined

true
false
// Can be only this two values
null // lack of real value, "​not​hin​g"
undefined // lack real of value, "​not​hin​g"

null and undefined are functi​onally similar, but two different types,
duplic​ation is due to historical reasons.

Language itself uses undefined most of the times (e.g. a function
without a return, returns undefi​ned). Because of that the convention
is to use null when you (as opposed to the program) need to use "​‐
not​hin​g" as a value

Operators, expres​sions, variables

- Operator - special symbol or symbols (e.g. +) that takes values
(operands) and results in a new value
- Expression - one or many operators with their operands. Always
results in (resolves to) a single value
- Variable - a container (label, binding) with a progra​mme​r-d​efined
name that is associated with (holds) a single value.
Once a value associated with (assigned to, bound to) a varibale, it
can be used in the following code by refere​ncing variable name.
In JS any variable can hold any type (JS is a dynami​cally typed
language). That is, a variable doesn't have a type, but its value does.
- Assignment operaror (=) - takes value on its right side and puts it
in its left-side operand (variable, object property, array index)
It has a very low preced​ence, so whatever is being assigned almost
always resolves to value and then is assigned.

Expres​sions 1

/* Literals */
// Literal of any type is an expression that
resolves to itself
5 // literal
"​foo​" // literal
/* Operators with operands */
5 + (7 * 13) // math expression

By crafter7058

cheatography.com/crafter7058/

Published 13th June, 2022.
Last updated 14th June, 2022.
Page 1 of 6.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/crafter7058/
http://www.cheatography.com/crafter7058/cheat-sheets/yet-another-javascript
http://www.cheatography.com/crafter7058/
https://readable.com

Yet Another JavaScript Cheat Sheet
by crafter7058 via cheatography.com/149534/cs/32482/

Expres​sions 1 (cont)

> true && (false || !false) // logical expression
+"56​2" // unary operator

Expression is something that resolves to a value (is evaluated)
during program execution

Complex expression resolution example

/* Preparation */
let myVarA = 3
const myVarB = 2
const arr = [5, 6, 7]
function square​d(n​umber) {
 ​ ​return number * number
}
/* Example */
55 / (12 - arr[2]) - +(true && !false) / square​‐
d(m​yVarB) - ++myVarA
// 55 / (12 - 7) - +(true && !false) / square​‐
d(m​yVarB) - ++myVarA
// 55 / 5 - +(true && !false) / square​d(m​yVarB)
- ++myVarA
// 55 / 5 - +(true && true) / square​d(m​yVarB) -
++myVarA
// 55 / 5 - + true / square​d(m​yVarB) - ++myVarA
// 55 / 5 - +true / 4 - ++myVarA
// 55 / 5 - 1 / 4 - ++myVarA
// 55 / 5 - 1 / 4 - 4
// 11 - 1 / 4 - 4
// 11 - 0.25 - 4
// 10.75 - 4
// 6.75

See operation precedence table for order in which subexp​res​sions
resolve

Non-pr​imitive (compo​site) types

Types that have internal structure and contain primitive types or other
non-pr​​im​itive types as its compon​​ents. They are altern​​at​ively called
composite, compound or aggregate data types.

Non-pr​imitive (compo​site) types (cont)

Is JS there is only one non-pr​​im​itive data type - object. Its internal
structure is a collection of key-value pairs, where each value is
stored and accessed by its key (a string that programmer chooses
similar to a variable name).
Such data types is useful when we need to store hetero​​ge​n​eous, but
related values. For instance, different inform​​ation about a user (his
name, age, date of birth etc.).
However there are special variates of objects that behave differ​​ently.
Two main subtypes are arrays and functions.
Arrays store many values in themse​​lves, each values is stored at
and accessed by an integer index. Indices in array are contig​​uous,
that is after 0 goes 1, then 2, then 3 and so on.
Arrays are useful when we need to store a list of similar values. For
instance, a series of numerical measur​​em​ents.
N.B. In JS it's techni​​cally possible skip indices and after storing value
at an index 0, for example, store next one at an index 10. However
that breaks internal optimi​​za​tions of arrays and is a fundam​​en​tally
wrong way to use them.
Functions are special syntactic constructs (but in JS they are also
values). They contain a series of statements in themselves and can
be called (invoked, executed) in different places throughout the
program. When called they (optio​nally) take some input data,
execute its contained statements and (optio​nally) return result back
where they were called.

Arrays

[1, 2, 3] // literal
[1, "​foo​", true, null, undefined] // can hold
values of multiple types
[[1, 2], [3, 4]] // can hold other arrays as
elements
[{amount: 6}, {amount: 16}] // can hold objects as
elements
const arr = [11, 22, 33]
arr[1] // get array element value, resolves to 22
arr[1] = 0 // set a element value, now arr is [11,
0, 33], overwrites existing value
arr.length // special property, it contains number
of elements (is this case 3)

Each array element is stored at an index. Indices start at 0, not 1.

For iteration over arrays see block on iteration

By crafter7058

cheatography.com/crafter7058/

Published 13th June, 2022.
Last updated 14th June, 2022.
Page 2 of 6.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/crafter7058/
http://www.cheatography.com/crafter7058/cheat-sheets/yet-another-javascript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence#table
http://www.cheatography.com/crafter7058/
https://readable.com

Yet Another JavaScript Cheat Sheet
by crafter7058 via cheatography.com/149534/cs/32482/

Iteration (loops)

let counterA = 0
while (counterA < 10) {
 ​ // at the start of every iteration checks if
condition is true
 ​ // If true, runs body, then checks again
 ​ // If false, then the loop is finished
 ​ ​con​sol​e.l​og(​'co​unterA equals ' + counterA)
 ​ ​cou​nterA++
}
for (let i = 0; i < 10; i++) {
 ​ ​ ​con​sol​e.l​og('i equals ' + i)
}
// let i = 0 - runs one time when loop starts
// i < 10 - checks condition at the start of every
iteration,
// same logic as in while loop
// i++ - runs at the end of every iteration
// two loops above are functi​onally identical,
// but for loop encaps​ulates counter (i) declar​‐
ation within its syntax
// and separates main action of the loop in its
body
// from changing counter value
const arr = ['a', 'b', 'c']
for (let i = 0; i < arr.le​ngth; i++) {
 ​ ​ ​con​sol​e.l​og(​'el​ement of arr at index ' +
i + ' equals ' + arr[i])
}
let counterB = 0
while (counterB < 10) {
 ​ if (counterB === 3) {
 ​ ​ ​ ​cou​nterB++
 ​ ​ ​ ​con​tinue // forces immediate exit from
current iteration
 ​ ​ ​ // goes to next iteration
 ​ ​ ​ // can be used in 'for' loops as well
 ​ }
 ​ ​con​sol​e.l​og(​'co​unterB equals ' + counterB)
 ​ ​cou​nterB++

Iteration (loops) (cont)

> }
let counterC = 0
while (true) { // condition will never be false
 ​ ​con​sol​e.l​og(​'co​unterC equals ' + counterC)
 ​ ​cou​nterC++
 ​ if (counterC === 5) {
 ​ ​ ​ ​break // forces immediate loop termin​ation
 ​ ​ ​ // program execution goes further
 ​ ​ ​ // can be used in 'for' loops as well
 ​ }
}

Loop body runs repeatedly (iterates) for as long as the loop condition
is true. When the loop condition becomes false, the loop termin​ates,
and program execution contiues further.

Loop use cases

Usually loops are used to do the same action, but with a different
value that changes between iterat​ions.
That value is stored in a variable (often called counter, index, i)
outside of loop body and is changed inside loop body (always in
case of 'while' loops and occasi​onally in 'for' loops) or, in case of 'for'
loops, in a special expression inside parent​heses (last of three
expres​sions).
Most often that repeated action is about doing something with an
array element and the value of 'i' variable is used as an index to
access an array element at that index.
'for' loops are good for that case, because number of iterations are
known at the start of the loop (for instance array length equals the
number of iterations for iterate over an entire array).
Altern​atively loops are used to repeat some action until something
happens (for instance network request is succes​sful).
'while' loops are good for that case, because the number of iterations
are unknown at the start of a loop (we don't know how many times
we have to repeat the request until it succeeds).

By crafter7058

cheatography.com/crafter7058/

Published 13th June, 2022.
Last updated 14th June, 2022.
Page 3 of 6.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/crafter7058/
http://www.cheatography.com/crafter7058/cheat-sheets/yet-another-javascript
http://www.cheatography.com/crafter7058/
https://readable.com

Yet Another JavaScript Cheat Sheet
by crafter7058 via cheatography.com/149534/cs/32482/

Statements

A statement is a command to a computer to do something.
Progra​mming languages (including JS) have a number of special words
(keywords) that, when used in the code, indicate to the computer that a
statement is issued and needs to be executed when program is run.
In JavaScript statements can be on single line (for instance variable declar​ation),
or on multiple (for instance 'if' statem​ent).
- Block statement ({}) - a special statement that contains other statements
within it. Rarely used on its own, usually it is used as a part of another statement
('if', 'while', 'for', 'function' etc.). When used as a part of another statement it's
called "body" (e.g. function body).
In JS statements without blocks are (optio​nally) terminated by a semicolon (;).
N.B. More than one statement can be on a single line, in which case they must
be separated (termi​nated) by a semicolon. Example:
let a; let b = 5; let c; // last semicolon is not mandatory
There are also a few other edge cases when semicolons must be used, because
without them it's impossible to unabmi​guously divide code into statem​ents. But
there cases are very rare.
Even though semicolons are optional begginners are often encouraged to still
use them, because that way it's easier for programmer to see where one
statement ends & another begins.

Primitive types

Types with no internal structure (e.g. a single string of text, a single number).
Primitive types are immutable, that is their value can't be changed. Examples:
5 + 10 // two values are used to create new value
let myVar = 7
myVar = myVar + 4 // existing myVar value is used (alognside 4) to create new value
// That new value overwrites existing myVar value
N.B. strings are considered primit​ives, but techni​cally have internal structure, since it's possible to access (but not
change) its individual charac​ters.

Number literals

12 // integer
3.45 // float
-512 // negative
0
Infinity // also -Infinity

Number literals (cont)

> NaN // "not a number​", special value
// results from illegal operations such as 5 / "​foo​"

String literals

'foo'
"​foo​" // same as single quotes
/* Escaping */
'I don\'t know' // I don't know
"Jack \"Ow​l\" Smith" // Jack "​Owl​" Smith
"​Don't need to escape​"
"Use this to escape \\ in string​s" // Use this to
escape \ in strings

/* Special characters */
"​First line.​\nSecond line"
/*
First line.
Second line
*/

Variable declar​ation

/* Declare & assign (initialize) */
var myVarA = 2 // outdated keyword, don't use
let myVarB = 4
const myVarC = 8 // can't be reassigned later
// recomm​ended to be used by default
/* Only declare */
let myVarD // has undefined as value
/* Reassign */
myVarB = "​foo​"
myVarD = [1, 2, 3]

By crafter7058

cheatography.com/crafter7058/

Published 13th June, 2022.
Last updated 14th June, 2022.
Page 4 of 6.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/crafter7058/
http://www.cheatography.com/crafter7058/cheat-sheets/yet-another-javascript
http://www.cheatography.com/crafter7058/
https://readable.com

Yet Another JavaScript Cheat Sheet
by crafter7058 via cheatography.com/149534/cs/32482/

Expres​sions 2

/* Variables */
const myVar = "​Hello world"
myVar // resolves to a value stored in the variable
/* Object properties */
const human = {
 ​ ​name: "​Joh​n",
 ​ age: 20,
}
human.age // resolves to a value stored in the
property
/* Array elements */
const arr = [10, 20, 30]
arr[1] // resolves to a value stored at that index
/* Function calls */
// Resolves to whatever is returned by a funtion
function sum(a, b) {
 ​ ​return a + b
}
sum(5, 15)

Places to use values

const value = "I'm just a value"
// As a part of a larger expression
value + ". Or am I?"
// Assigned to variables
const newValue = value
// Assigned to object properties
const obj = {}
obj.me​ssage = value
// Put in an array at a certain index
const arr = [1, 2, 3]
arr[0] = value
// As function parameters
function isBool​ean​(to​Test) {
 ​ ​return toTest === false || toTest === true

Places to use values (cont)

> }
isBool​ean​(value)
// As a function returned value
function getTen() {
 ​ ​const value = 10
 ​ ​return value
}

Expres​sions resolve to values & values can used in these places

Objects

{
 ​ key: "​val​ue",
 ​ ​key2: 5,
} // literal
// can hold arrays & other objects
const post = {
 ​ ​text: "Come and join me!",
 ​ ​cat​ego​ries: ["fu​n", "​use​r-f​rie​ndl​y",
"​pay​wal​led​"],
 ​ ​isV​isible: true,
 ​ ​cre​atedAt: "​202​2-0​6-1​2T1​8:5​8:1​3.0​‐
59Z​",
 ​ ​eng​age​ment: {
 ​ ​ ​ ​likes: 5,
 ​ ​ ​ ​com​ments: 0,
 ​ ​ ​ ​shares: 0,
 ​ },
}
post.i​sVi​sible // get value stored in property
"​isV​isi​ble​"
post.text = "Best time of your life" // set value
for property "​tex​t",
// overwrites existing value
post.e​nga​gem​ent​s.like // get and set deeply
nested properties
// by chaining property names
post.foo // getting non-ex​isting property
evaluates to undefined,
// but doesn't result in explicit error
post.f​oo.bar // this results in an error,

By crafter7058

cheatography.com/crafter7058/

Published 13th June, 2022.
Last updated 14th June, 2022.
Page 5 of 6.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/crafter7058/
http://www.cheatography.com/crafter7058/cheat-sheets/yet-another-javascript
http://www.cheatography.com/crafter7058/
https://readable.com

Yet Another JavaScript Cheat Sheet
by crafter7058 via cheatography.com/149534/cs/32482/

Objects (cont)

> // because it's impossible to access property of undefined

Objects are containers for values, where each values is associated
with a string key (a property). Key-value pairs are separated by a
comma.

They are used to store values of different types that are related in
some way (for instance to represent real world entities: people, cars,
bank accounts etc.)

Condit​ionals

let conditionA = true
if (condi​tionA) {
 ​ ​con​sol​e.l​og(​"I will run")
}
conditionA = false
if (condi​tionA) {
 ​ ​con​sol​e.l​og(​"I won't run")
}
// any condition must resolve to a boolean value.
// If an expression in condtion isn't boolean,
it's converted to boolean
conditionA = 5
if (condi​tionA) {
 ​ ​con​sol​e.l​og(​"I, too, will run")
}
// logical operators can be used to create complex
conditions
const conditionB = false
if (condi​tionA && !condi​tionB) {
 ​ ​con​sol​e.l​og(​"​Complex condition is true!")
}
// use esle keyword to do something if condition
is false
if (condi​tionB) {
 ​ ​con​sol​e.l​og(​"​Either I will run")
} else {
 ​ ​con​sol​e.l​og(​"Or me")
}
// use else if keyword to check for multiple cases.

Condit​ionals (cont)

> // It checks conditions until the first true condition is met,
// that branch runs, following branches are ignored
const age = 15
if (age < 5) {
 ​ ​con​sol​e.l​og(​"​Bab​y")
} else if (age < 16) {
 ​ ​con​sol​e.l​og(​"​Chi​ld") // this will run
} else if (age < 30) {
 ​ ​con​sol​e.l​og(​"​Young adult") // this and following branches won't run
 ​ // even though condition is true,
 ​ // because previous branch was executed already
} else if (age < 60) {
 ​ ​con​sol​e.l​og(​"​Adu​lt")
} else { // this is optional, to run if all above condtions are false
 ​ ​con​sol​e.l​og(​"Old man")
}

By crafter7058

cheatography.com/crafter7058/

Published 13th June, 2022.
Last updated 14th June, 2022.
Page 6 of 6.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/crafter7058/
http://www.cheatography.com/crafter7058/cheat-sheets/yet-another-javascript
http://www.cheatography.com/crafter7058/
https://readable.com

	Yet Another JavaScript Cheat Sheet - Page 1
	What is a program
	Boolean literals, null, undefined
	Operators, expres­sions, variables
	Values, data types
	Expres­sions 1

	Yet Another JavaScript Cheat Sheet - Page 2
	Complex expression resolution example
	Arrays
	Non-pr­imitive (compo­site) types

	Yet Another JavaScript Cheat Sheet - Page 3
	Iteration (loops)
	Loop use cases

	Yet Another JavaScript Cheat Sheet - Page 4
	Statements
	String literals
	Variable declar­ation
	Primitive types
	Number literals

	Yet Another JavaScript Cheat Sheet - Page 5
	Expres­sions 2
	Objects
	Places to use values

	Yet Another JavaScript Cheat Sheet - Page 6
	Condit­ionals

