
Yet Another JavaScript Cheat Sheet
by crafter7058 via cheatography.com/149534/cs/32482/

What is a programWhat is a program

- Program - a sequence of statementsstatements that are executed in a certain
order (by default sequentially, from top to bottom).
In synchronous programs only one statement is executed at a timeone statement is executed at a time.
During the execution of these statements input datainput data is (optionally)
received from the outside of program, then through the use of
expressionsexpressions somehow transformed and/or used to create new data,
and then the resulting data is outputoutput to the outside of program.
Program also operates on the data that is created during the program
execution.
Data is passed throughout the program by associating it with a
variablevariable and later referencing variable name to access data created
during the previous steps of the program.
Some programs start their execution, do their task and output the
result. After which they terminate (finish). Such programs are
sometimes called scripts. They are usually relatively simple.
Other programs run indefinetely, until an external command is given
to terminate a program (e.g. 'close' button is pressed).

Values, data typesValues, data types

- Value - a piece of dataa piece of data that a program works with. Always belongs
to one of the typestypes.
- Literal value - value that is created during program execution. For
instance, if you need to add 3 to some value, you would write literal
value 3 in your code in order to perform this operation.
- (Data) Types - different categories of data that are defined by a
programming language. Different languages have different types.
JavaScript has 8 types, of them 7 primitive7 primitive types and an object object type.
Types determine what kind of operationsoperations can be performed on values
of that type. For instance a string of text can be converted to lower
case, while two numbers can be multipled by each other.
Performing an invalidinvalid (illegal) operation on a value (e.g. trying to
multiply two strings) is a mistakemistake & usually (but in JS not always)
results in an explicit program errorprogram error.
Values can be convertedconverted between types, becoming values of anotheranother
typetype. However not all type conversions are possible or make sense.
Number 512 can become a string '512'. But string 'hello' can't
become any meaningful number.
Additionally dividing data between types allows programming
language to store data and operate on it more efficiently. For
instance arrays are optimized to allow very fast iteration of their
elements.

Values, data types (cont)Values, data types (cont)

N.B. In JS arrays aren't its own type, but rather a special variety of
objects.

Boolean literals, null, undefinedBoolean literals, null, undefined

true
false
// Can be only this two values
null // lack of real value, " not hin g"
undefined // lack real of value, " not hin g"

null and undefined are functionally similar, but two different types,
duplication is due to historical reasons.

Language itself uses undefined most of the times (e.g. a function
without a return, returns undefined). Because of that the convention
is to use null when you (as opposed to the program) need to use "‐
nothing" as a value

Operators, expressions, variablesOperators, expressions, variables

- Operator - special symbol or symbols (e.g. +) that takes values
(operands) and results in a new value
- Expression - one or many operators with their operands. Always
results in (resolves to) a single value
- Variable - a container (label, binding) with a programmer-defined
name that is associated with (holds) a single value.
Once a value associated with (assigned to, bound to) a varibale, it
can be used in the following code by referencing variable name.
In JS any variable can hold any type (JS is a dynamically typed
language). That is, a variable doesn't have a type, but its value does.
- Assignment operaror (=) - takes value on its right side and puts it
in its left-side operand (variable, object property, array index)
It has a very low precedence, so whatever is being assigned almost
always resolves to value and then is assigned.

By crafter7058crafter7058

cheatography.com/crafter7058/

Published 13th June, 2022.
Last updated 14th June, 2022.
Page 1 of 7.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/crafter7058/
http://www.cheatography.com/crafter7058/cheat-sheets/yet-another-javascript
http://www.cheatography.com/crafter7058/
https://apollopad.com

Yet Another JavaScript Cheat Sheet
by crafter7058 via cheatography.com/149534/cs/32482/

Expressions 1Expressions 1

/* Literals */
// Literal of any type is an expression that
resolves to itself
5 // literal
" foo " // literal
/* Operators with operands */
5 + (7 * 13) // math expression
true && (false || !false) // logical expression
+"56 2" // unary operator

Expression is something that resolves to a value (is evaluated)
during program execution

Complex expression resolution exampleComplex expression resolution example

/* Preparation */
let myVarA = 3
const myVarB = 2
const arr = [5, 6, 7]
function square d(n umber) {
 return number * number
}
/* Example */
55 / (12 - arr[2]) - +(true && !false) / square d(m ‐
yVarB) - ++myVarA
// 55 / (12 - 7) - +(true && !false) / square d(m ‐
yVarB) - ++myVarA
// 55 / 5 - +(true && !false) / square d(m yVarB) -
++myVarA
// 55 / 5 - +(true && true) / square d(m yVarB) -
++myVarA
// 55 / 5 - + true / square d(m yVarB) - ++myVarA
// 55 / 5 - +true / 4 - ++myVarA
// 55 / 5 - 1 / 4 - ++myVarA
// 55 / 5 - 1 / 4 - 4
// 11 - 1 / 4 - 4
// 11 - 0.25 - 4
// 10.75 - 4

Complex expression resolution example (cont)Complex expression resolution example (cont)

// 6.75

See operation precedence table for order in which subexpressions
resolve

Non-primitive (composite) typesNon-primitive (composite) types

Types that have internal structure and contain primitive types or
other non-primitive types as its components. They are alternatively
called composite, compound or aggregate data types.
Is JS there is only one non-primitive data type - object. Its internal
structure is a collection of key-value pairs, where each value is
stored and accessed by its key (a string that programmer chooses
similar to a variable name).
Such data types is useful when we need to store heterogeneous, but
related values. For instance, different information about a user (his
name, age, date of birth etc.).
However there are special variates of objects that behave differently.
Two main subtypes are arrays and functions.
Arrays store many values in themselves, each values is stored at
and accessed by an integer index. Indices in array are contiguous,
that is after 0 goes 1, then 2, then 3 and so on.
Arrays are useful when we need to store a list of similar values. For
instance, a series of numerical measurements.
N.B. In JS it's technically possible skip indices and after storing value
at an index 0, for example, store next one at an index 10. However
that breaks internal optimizations of arrays and is a fundamentally
wrong way to use them.
Functions are special syntactic constructs (but in JS they are also
values). They contain a series of statements in themselves and can
be called (invoked, executed) in different places throughout the
program. When called they (optionally) take some input data,
execute its contained statements and (optionally) return result back
where they were called.

ArraysArrays

[1, 2, 3] // literal
[1, " foo ", true, null, undefined] // can hold
values of multiple types
[[1, 2], [3, 4]] // can hold other arrays as
elements
[{amount: 6}, {amount: 16}] // can hold objects as
elements

By crafter7058crafter7058

cheatography.com/crafter7058/

Published 13th June, 2022.
Last updated 14th June, 2022.
Page 2 of 7.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/crafter7058/
http://www.cheatography.com/crafter7058/cheat-sheets/yet-another-javascript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence#table
http://www.cheatography.com/crafter7058/
https://apollopad.com

Yet Another JavaScript Cheat Sheet
by crafter7058 via cheatography.com/149534/cs/32482/

Arrays (cont)Arrays (cont)

const arr = [11, 22, 33]
arr[1] // get array element value, resolves to 22
arr[1] = 0 // set a element value, now arr is [11,
0, 33], overwrites existing value
arr.length // special property, it contains number
of elements (is this case 3)

Each array element is stored at an index. Indices start at 0, not 1.

For iteration over arrays see block on iteration

Iteration (loops)Iteration (loops)

let counterA = 0
while (counterA < 10) {
 // at the start of every iteration checks if
condition is true
 // If true, runs body, then checks again
 // If false, then the loop is finished
 con sol e.l og('co unterA equals ' + counterA)
 cou nterA++
}
for (let i = 0; i < 10; i++) {
 con sol e.l og('i equals ' + i)
}
// let i = 0 - runs one time when loop starts
// i < 10 - checks condition at the start of every
iteration,
// same logic as in while loop
// i++ - runs at the end of every iteration
// two loops above are functi onally identical,
// but for loop encaps ulates counter (i) declar ‐
ation within its syntax
// and separates main action of the loop in its
body
// from changing counter value
const arr = ['a', 'b', 'c']
for (let i = 0; i < arr.le ngth; i++) {
 con sol e.l og('el ement of arr at index ' + i + '
equals ' + arr[i])
}

Iteration (loops) (cont)Iteration (loops) (cont)

let counterB = 0
while (counterB < 10) {
 if (counterB === 3) {
 cou nterB++
 con tinue // forces immediate exit from current
iteration
 // goes to next iteration
 // can be used in 'for' loops as well
 }
 con sol e.l og('co unterB equals ' + counterB)
 cou nterB++
}
let counterC = 0
while (true) { // condition will never be false
 con sol e.l og('co unterC equals ' + counterC)
 cou nterC++
 if (counterC === 5) {
 break // forces immediate loop termin ation
 // program execution goes further
 // can be used in 'for' loops as well
 }
}

Loop body runs repeatedly (iterates) for as long as the loop condition
is true. When the loop condition becomes false, the loop terminates,
and program execution contiues further.

Loop use casesLoop use cases

Usually loops are used to do the same action, but with a different
value that changes between iterations.
That value is stored in a variable (often called counter, index, i)
outside of loop body and is changed inside loop body (always in
case of 'while' loops and occasionally in 'for' loops) or, in case of 'for'
loops, in a special expression inside parentheses (last of three
expressions).

By crafter7058crafter7058

cheatography.com/crafter7058/

Published 13th June, 2022.
Last updated 14th June, 2022.
Page 3 of 7.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/crafter7058/
http://www.cheatography.com/crafter7058/cheat-sheets/yet-another-javascript
http://www.cheatography.com/crafter7058/
https://apollopad.com

Yet Another JavaScript Cheat Sheet
by crafter7058 via cheatography.com/149534/cs/32482/

Loop use cases (cont)Loop use cases (cont)

Most often that repeated action is about doing something with an
array element and the value of 'i' variable is used as an index to
access an array element at that index.
'for' loops are good for that case, because number of iterations are
known at the start of the loop (for instance array length equals the
number of iterations for iterate over an entire array).
Alternatively loops are used to repeat some action until something
happens (for instance network request is successful).
'while' loops are good for that case, because the number of iterations
are unknown at the start of a loop (we don't know how many times
we have to repeat the request until it succeeds).

StatementsStatements

A statement is a command to a computer to do something.
Programming languages (including JS) have a number of special
words (keywordskeywords) that, when used in the code, indicate to the
computer that a statement is issued and needs to be executed when
program is run.
In JavaScript statements can be on single line (for instance variable
declaration), or on multiple (for instance 'if' statement).
- Block statement ({}) - a special statement that contains other
statements within it. Rarely used on its own, usually it is used as a
part of another statement ('if', 'while', 'for', 'function' etc.). When used
as a part of another statement it's called "bodybody" (e.g. function body).
In JS statements without blocks are (optionally) terminated by a
semicolonsemicolon (;).
N.B. More than one statement can be on a single line, in which case
they mustmust be separated (terminated) by a semicolon. Example:
let a; let b = 5; let c; // last semicolon is not
mandatory
There are also a few other edge cases when semicolons must be
used, because without them it's impossible to unabmiguously divide
code into statements. But there cases are very rare.
Even though semicolons are optional begginners are often
encouraged to still use them, because that way it's easier for
programmer to see where one statement ends & another begins.

Primitive typesPrimitive types

Types with no internal structure (e.g. a single string of text, a single
number).
Primitive types are immutable, that is their value can't be changed.
Examples:
5 + 10 // two values are used to create new value
let myVar = 7
myVar = myVar + 4 // existing myVar value is used
(alognside 4) to create new value
// That new value overwrites existing myVar value
N.B. strings are considered primitives, but technically have internal
structure, since it's possible to access (but not change) its individual
characters.

Number literalsNumber literals

12 // integer
3.45 // float
-512 // negative
0
Infinity // also -Infinity
NaN // "not a number ", special value
// results from illegal operations such as 5 / " ‐

foo "

String literalsString literals

'foo'
" foo " // same as single quotes
/* Escaping */
'I don\'t know' // I don't know
"Jack \"Ow l\" Smith" // Jack " Owl " Smith

" Don't need to escape "
"Use this to escape \\ in string s" // Use this to
escape \ in strings

/* Special characters */
" First line. \nSecond line"
/*
First line.
Second line

By crafter7058crafter7058

cheatography.com/crafter7058/

Published 13th June, 2022.
Last updated 14th June, 2022.
Page 4 of 7.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/crafter7058/
http://www.cheatography.com/crafter7058/cheat-sheets/yet-another-javascript
http://www.cheatography.com/crafter7058/
https://apollopad.com

Yet Another JavaScript Cheat Sheet
by crafter7058 via cheatography.com/149534/cs/32482/

String literals (cont)String literals (cont)

*/

Variable declarationVariable declaration

/* Declare & assign (initialize) */
var myVarA = 2 // outdated keyword, don't use
let myVarB = 4
const myVarC = 8 // can't be reassigned later
// recomm ended to be used by default
/* Only declare */
let myVarD // has undefined as value
/* Reassign */
myVarB = " foo "
myVarD = [1, 2, 3]

Expressions 2Expressions 2

/* Variables */
const myVar = " Hello world"
myVar // resolves to a value stored in the variable
/* Object properties */
const human = {
 name: " Joh n",
 age: 20,
}
human.age // resolves to a value stored in the
property
/* Array elements */
const arr = [10, 20, 30]
arr[1] // resolves to a value stored at that index
/* Function calls */
// Resolves to whatever is returned by a funtion
function sum(a, b) {
 return a + b

Expressions 2 (cont)Expressions 2 (cont)

}
sum(5, 15)

Places to use valuesPlaces to use values

const value = "I'm just a value"
// As a part of a larger expression
value + ". Or am I?"
// Assigned to variables
const newValue = value
// Assigned to object properties
const obj = {}
obj.me ssage = value
// Put in an array at a certain index
const arr = [1, 2, 3]
arr[0] = value
// As function parameters
function isBool ean (to Test) {
 return toTest === false || toTest === true
}
isBool ean (value)
// As a function returned value
function getTen() {
 const value = 10
 return value
}

Expressions resolve to values & values can used in these places

By crafter7058crafter7058

cheatography.com/crafter7058/

Published 13th June, 2022.
Last updated 14th June, 2022.
Page 5 of 7.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/crafter7058/
http://www.cheatography.com/crafter7058/cheat-sheets/yet-another-javascript
http://www.cheatography.com/crafter7058/
https://apollopad.com

Yet Another JavaScript Cheat Sheet
by crafter7058 via cheatography.com/149534/cs/32482/

ObjectsObjects

{
 key: " val ue",
 key2: 5,
} // literal
// can hold arrays & other objects
const post = {
 text: "Come and join me!",
 cat ego ries: ["fu n", " use r-f rie ndl y", " pay wal ‐
led "],
 isV isible: true,
 cre atedAt: " 202 2-0 6-1 2T1 8:5 8:1 3.0 59Z ",
 eng age ment: {
 likes: 5,
 com ments: 0,
 shares: 0,
 },
}
post.i sVi sible // get value stored in property " ‐
isV isi ble "
post.text = "Best time of your life" // set value
for property " tex t",
// overwrites existing value
post.e nga gem ent s.like // get and set deeply nested
properties
// by chaining property names
post.foo // getting non-ex isting property
evaluates to undefined,
// but doesn't result in explicit error
post.f oo.bar // this results in an error,
// because it's impossible to access property of
undefined

Objects are containers for values, where each values is associated
with a string key (a property). Key-value pairs are separated by a
comma.

They are used to store values of different types that are related in
some way (for instance to represent real world entities: people, cars,
bank accounts etc.)

ConditionalsConditionals

let conditionA = true
if (condi tionA) {
 con sol e.l og("I will run")
}
conditionA = false
if (condi tionA) {
 con sol e.l og("I won't run")
}
// any condition must resolve to a boolean value.
// If an expression in condtion isn't boolean,
it's converted to boolean
conditionA = 5
if (condi tionA) {
 con sol e.l og("I, too, will run")
}
// logical operators can be used to create complex
conditions
const conditionB = false
if (condi tionA && !condi tionB) {
 con sol e.l og(" Complex condition is true!")
}
// use esle keyword to do something if condition
is false
if (condi tionB) {
 con sol e.l og(" Either I will run")
} else {
 con sol e.l og("Or me")
}
// use else if keyword to check for multiple
cases.
// It checks conditions until the first true
condition is met,
// that branch runs, following branches are
ignored
const age = 15
if (age < 5) {

By crafter7058crafter7058

cheatography.com/crafter7058/

Published 13th June, 2022.
Last updated 14th June, 2022.
Page 6 of 7.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/crafter7058/
http://www.cheatography.com/crafter7058/cheat-sheets/yet-another-javascript
http://www.cheatography.com/crafter7058/
https://apollopad.com

Yet Another JavaScript Cheat Sheet
by crafter7058 via cheatography.com/149534/cs/32482/

Conditionals (cont)Conditionals (cont)

 con sol e.l og(" Bab y")
} else if (age < 16) {
 con sol e.l og(" Chi ld") // this will run
} else if (age < 30) {
 con sol e.l og(" Young adult") // this and following
branches won't run
 // even though condition is true,
 // because previous branch was executed already
} else if (age < 60) {
 con sol e.l og(" Adu lt")
} else { // this is optional, to run if all above
condtions are false
 con sol e.l og("Old man")
}

By crafter7058crafter7058

cheatography.com/crafter7058/

Published 13th June, 2022.
Last updated 14th June, 2022.
Page 7 of 7.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/crafter7058/
http://www.cheatography.com/crafter7058/cheat-sheets/yet-another-javascript
http://www.cheatography.com/crafter7058/
https://apollopad.com

	Yet Another JavaScript Cheat Sheet - Page 1
	What is a program
	Boolean literals, null, undefined
	Operators, expressions, variables
	Values, data types

	Yet Another JavaScript Cheat Sheet - Page 2
	Expressions 1
	Non-primitive (composite) types
	Complex expression resolution example
	Arrays

	Yet Another JavaScript Cheat Sheet - Page 3
	Iteration (loops)
	Loop use cases

	Yet Another JavaScript Cheat Sheet - Page 4
	Primitive types
	Statements
	Number literals
	String literals

	Yet Another JavaScript Cheat Sheet - Page 5
	Variable declaration
	Places to use values
	Expressions 2

	Yet Another JavaScript Cheat Sheet - Page 6
	Objects
	Conditionals

	Yet Another JavaScript Cheat Sheet - Page 7

