
Summary of 'Clean Code' By Robert C. Martin Cheat Sheet
by CosteMaxime via cheatography.com/75716/cs/18799/

Hints that the code you're reading is a messHints that the code you're reading is a mess

RigidityRigidity

No change is trivial, every change in the
code add more twists and tangles.

ComplexityComplexity

As above, no change is trivial and
requires a lot of research.

FragilityFragility

Changes breaking other parts of the
code.

ImmobilityImmobility

You cannot reuse part of the existing
code

General RulesGeneral Rules

Follow the Boy Scout RuleBoy Scout Rule : Leave the code
cleaner than when you found it

Follow the Principle of Least SurprisePrinciple of Least Surprise

Follow Standard ConventionsStandard Conventions, both langage
related and team related

Keep it simplesimple stupid

Don't repeatDon't repeat yourself

Be consistentconsistent

Do not override safeties

Design RulesDesign Rules

Functions should descend only one level ofonly one level of
abstractionabstraction, and statements in a function
should be at the same level of abstractionthe same level of abstraction

Use dependency injectiondependency injection

Keep your boundaries cleanboundaries clean

Encapsulate conditionalsEncapsulate conditionals, try to avoid
negative conditionals

Make logical dependencies physical

Use polymorphismpolymorphism instead of if / else or
switch / case

Avoid hidden temporal couplings

 

Design Rules (cont)Design Rules (cont)

Keep configurable data (ie: constants) at
high levels, they should be easy to changeeasy to change

Use Enums over constants

Source Code StructureSource Code Structure

Use vertical formattingvertical formatting to separate your
code and different concepts, you should
read your code from top to bottomfrom top to bottom without "‐
jumping" over functions

Variables should be declared as close todeclared as close to
their usagetheir usage as possible

Instance variablesInstance variables should be declared at the
top of the classtop of the class

Put statics methods on top of the package

Similar and dependentSimilar and dependent functions should be
close verticallyclose vertically

Balance between vertical opennessvertical openness and
vertical densityvertical density. Same rules apply for
horizontal density

Do not align your code horizontally

Use consistent indentationconsistent indentation

Naming RulesNaming Rules

Use descriptivedescriptive and intention-revealingintention-revealing
variable names

Make meaningful distinctionsmeaningful distinctions

Use pronounceable and searchable namessearchable names

Avoid disinformation and encoded names

Avoid member prefixes or types information
(Hungarian Notation)

Avoid mental mapping

Replace Magic Numbers with ConstantsConstants

 

FunctionsFunctions

Functions should do one thing and theyFunctions should do one thing and they
should do it wellshould do it well

Functions should be relatively smallsmall

Functions should have descriptives namesdescriptives names

Functions should have as few argumentsfew arguments
as possible (no more than 3 if possible)

Functions should have no side effectsno side effects

Use explanatory variablesexplanatory variables to explain your
intent / algorithm

Don't use flag arguments

Avoid output arguments, they're misleading

Objects VS Data StructuresObjects VS Data Structures

Data structures exposes data and have noexposes data and have no
behaviorbehavior.
So, procedural code makes it easy to addeasy to add
new functionnew function without changing the existing
data structures.

Objects expose behavior and hide dataexpose behavior and hide data.
Object Oriented code makes it easy to addeasy to add
new classesnew classes without changing existing
functions

Avoid hybrids (half object and half data
structure)

 

The Law of Demeter : The Law of Demeter : A class should not
know about the innards of the objects it
manipulates. Objects should not expose
theirs internals.

Same as functions : they should do onedo one
thingthing and they should be smallsmall

Avoid and split Train Wrecks : objectA.g
etB().getC().getD();

Keep the number of instance variables low,
if your class have too many instance
variable, then it is probably doing more thanthen it is probably doing more than
one thingone thing

By CosteMaximeCosteMaxime

cheatography.com/costemaxime/

 

Published 13th February, 2019.
Last updated 14th February, 2019.
Page 1 of 2.  

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/costemaxime/
http://www.cheatography.com/costemaxime/cheat-sheets/summary-of-clean-code-by-robert-c-martin
http://en.wikipedia.org/wiki/Principle_of_least_astonishment
https://en.wikipedia.org/wiki/Law_of_Demeter
http://www.cheatography.com/costemaxime/
https://apollopad.com


Summary of 'Clean Code' By Robert C. Martin Cheat Sheet
by CosteMaxime via cheatography.com/75716/cs/18799/

Error handlingError handling

Error handling is one thing, don't mix errordon't mix error
handling and codehandling and code

Use ExceptionsExceptions instead of returning error
codes

Write the try-catch-finally statement first, it
will help you structure your code

Don't return null, don't pass null either

Throw exceptions with contextwith context

TestsTests

F.I.R.S.T : Fast, Independent, Repeatable,F.I.R.S.T : Fast, Independent, Repeatable,
Self-Validating, TimelySelf-Validating, Timely

One assertOne assert per test

Keep your tests as clean as your productionas clean as your production
codecode, they should be easily readable

Use a coverage toolcoverage tool

Tests should be easy to runeasy to run

TDDTDD

3 Laws of Test Driven Development3 Laws of Test Driven Development, this
should ensure that you write your tests and
your code simultaneouslysimultaneously

You may not write production code until you
have written a failing unit test

You may not write more of a unit test than is
sufficient to fail, and not compiling count as
failing

You may not write production code that is
sufficient to pass the currently failing test

CommentsComments

When to write a comment ?

Explain yourself in code, not inExplain yourself in code, not in
commentcomment. If it's not possible, take your
time to write a GOOD comment.

What makes up a Good comment ?

Use comments to informinform, explainexplain, clarifyclarify,
or warnwarn the reader

 

Comments (cont)Comments (cont)

Comment-out code ?

DELETE ITDELETE IT

 

Avoid using more than one langage in a
single source file (Html comments, Javadoc
for nonplublic code)

Avoid inappropriate Informations (change
history, license, ...)

Avoid misleading or noise comments

Don't be redundant ( i++; // incremen
t i)

Closing brace comments (} // end of 
function)

CreditsCredits

From "Clean Code" by Robert C. Martin

Inspired by this summary

 

By Coste Maxime
 

By CosteMaximeCosteMaxime

cheatography.com/costemaxime/

 

Published 13th February, 2019.
Last updated 14th February, 2019.
Page 2 of 2.  

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/costemaxime/
http://www.cheatography.com/costemaxime/cheat-sheets/summary-of-clean-code-by-robert-c-martin
https://gist.github.com/wojteklu/73c6914cc446146b8b533c0988cf8d29
http://www.cheatography.com/costemaxime/
https://apollopad.com

	Summary of 'Clean Code' By Robert C. Martin Cheat Sheet - Page 1
	Hints that the code you're reading is a mess
	Functions
	Source Code Structure
	Objects VS Data Structures
	General Rules
	Naming Rules
	Design Rules

	Summary of 'Clean Code' By Robert C. Martin Cheat Sheet - Page 2
	Error handling
	Tests
	Credits
	TDD
	Comments


