
Summary of 'Clean Code' By Robert C. Martin Cheat Sheet
by CosteMaxime via cheatography.com/75716/cs/18799/

Hints that the code you're reading is a mess

Rigidity

No change is trivial, every change in the
code add more twists and tangles.

Complexity

As above, no change is trivial and
requires a lot of research.

Fragility

Changes breaking other parts of the
code.

Immobility

You cannot reuse part of the existing
code

General Rules

Follow the Boy Scout Rule : Leave the code
cleaner than when you found it

Follow the Principle of Least Surprise

Follow Standard Conven​tions, both langage
related and team related

Keep it simple stupid

Don't repeat yourself

Be consistent

Do not override safeties

Design Rules

Functions should descend only one level of
abstra​ction, and statements in a function
should be at the same level of abstra​ction

Use dependency injection

Keep your boundaries clean

Encaps​ulate condit​ionals, try to avoid
negative condit​ionals

Make logical depend​encies physical

Use polymo​rphism instead of if / else or
switch / case

Avoid hidden temporal couplings

Design Rules (cont)

Keep config​urable data (ie: constants) at
high levels, they should be easy to change

Use Enums over constants

Source Code Structure

Use vertical formatting to separate your
code and different concepts, you should
read your code from top to bottom without "​‐
jum​pin​g" over functions

Variables should be declared as close to
their usage as possible

Instance variables should be declared at the
top of the class

Put statics methods on top of the package

Similar and dependent functions should be
close vertically

Balance between vertical openness and
vertical density. Same rules apply for
horizontal density

Do not align your code horizo​ntally

Use consistent indent​ation

Naming Rules

Use descri​ptive and intent​ion​-re​vealing
variable names

Make meaningful distin​ctions

Use pronou​nceable and searchable names

Avoid disinf​orm​ation and encoded names

Avoid member prefixes or types inform​ation
(Hungarian Notation)

Avoid mental mapping

Replace Magic Numbers with Constants

Functions

Functions should do one thing and they
should do it well

Functions should be relatively small

Functions should have descri​ptives names

Functions should have as few arguments
as possible (no more than 3 if possible)

Functions should have no side effects

Use explan​atory variables to explain your
intent / algorithm

Don't use flag arguments

Avoid output arguments, they're misleading

Objects VS Data Structures

Data structures exposes data and have no
behavior.
So, procedural code makes it easy to add
new function without changing the existing
data struct​ures.

Objects expose behavior and hide data.
Object Oriented code makes it easy to add
new classes without changing existing
functions

Avoid hybrids (half object and half data
structure)

The Law of Demeter : A class should not
know about the innards of the objects it
manipu​lates. Objects should not expose
theirs internals.

Same as functions : they should do one
thing and they should be small

Avoid and split Train Wrecks : object​A.g
​etB​().g​et​C().ge​tD();

Keep the number of instance variables low,
if your class have too many instance
variable, then it is probably doing more than
one thing

By CosteMaxime

cheatography.com/costemaxime/

Published 13th February, 2019.
Last updated 14th February, 2019.
Page 1 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/costemaxime/
http://www.cheatography.com/costemaxime/cheat-sheets/summary-of-clean-code-by-robert-c-martin
http://en.wikipedia.org/wiki/Principle_of_least_astonishment
https://en.wikipedia.org/wiki/Law_of_Demeter
http://www.cheatography.com/costemaxime/
https://apollopad.com

Summary of 'Clean Code' By Robert C. Martin Cheat Sheet
by CosteMaxime via cheatography.com/75716/cs/18799/

Error handling

Error handling is one thing, don't mix error
handling and code

Use Exceptions instead of returning error
codes

Write the try-ca​tch​-fi​nally statement first, it
will help you structure your code

Don't return null, don't pass null either

Throw exceptions with context

Tests

F.I.R.S.T : Fast, Indepe​ndent, Repeat​able,
Self-V​ali​dating, Timely

One assert per test

Keep your tests as clean as your production
code, they should be easily readable

Use a coverage tool

Tests should be easy to run

TDD

3 Laws of Test Driven Develo​pment, this
should ensure that you write your tests and
your code simult​ane​ously

You may not write production code until you
have written a failing unit test

You may not write more of a unit test than is
sufficient to fail, and not compiling count as
failing

You may not write production code that is
sufficient to pass the currently failing test

Comments

When to write a comment ?

Explain yourself in code, not in
comment. If it's not possible, take your
time to write a GOOD comment.

What makes up a Good comment ?

Use comments to inform, explain, clarify,
or warn the reader

Comments (cont)

Commen​t-out code ?

DELETE IT

Avoid using more than one langage in a
single source file (Html comments, Javadoc
for nonplublic code)

Avoid inappr​opriate Inform​ations (change
history, license, ...)

Avoid misleading or noise comments

Don't be redundant (i++; // incremen
t i)

Closing brace comments (} // end of
function)

Credits

From "​Clean Code" by Robert C. Martin

Inspired by this summary

By Coste Maxime

By CosteMaxime

cheatography.com/costemaxime/

Published 13th February, 2019.
Last updated 14th February, 2019.
Page 2 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/costemaxime/
http://www.cheatography.com/costemaxime/cheat-sheets/summary-of-clean-code-by-robert-c-martin
https://gist.github.com/wojteklu/73c6914cc446146b8b533c0988cf8d29
http://www.cheatography.com/costemaxime/
https://apollopad.com

	Summary of 'Clean Code' By Robert C. Martin Cheat Sheet - Page 1
	Hints that the code you're reading is a mess
	Functions
	Source Code Structure
	Objects VS Data Structures
	General Rules
	Naming Rules
	Design Rules

	Summary of 'Clean Code' By Robert C. Martin Cheat Sheet - Page 2
	Error handling
	Tests
	Credits
	TDD
	Comments

