\documentclass[10pt,a4paper]{article}

% Packages
\usepackage{fancyhdr}           % For header and footer
\usepackage{multicol}           % Allows multicols in tables
\usepackage{tabularx}           % Intelligent column widths
\usepackage{tabulary}           % Used in header and footer
\usepackage{hhline}             % Border under tables
\usepackage{graphicx}           % For images
\usepackage{xcolor}             % For hex colours
%\usepackage[utf8x]{inputenc}    % For unicode character support
\usepackage[T1]{fontenc}        % Without this we get weird character replacements
\usepackage{colortbl}           % For coloured tables
\usepackage{setspace}           % For line height
\usepackage{lastpage}           % Needed for total page number
\usepackage{seqsplit}           % Splits long words.
%\usepackage{opensans}          % Can't make this work so far. Shame. Would be lovely.
\usepackage[normalem]{ulem}     % For underlining links
% Most of the following are not required for the majority
% of cheat sheets but are needed for some symbol support.
\usepackage{amsmath}            % Symbols
\usepackage{MnSymbol}           % Symbols
\usepackage{wasysym}            % Symbols
%\usepackage[english,german,french,spanish,italian]{babel}              % Languages

% Document Info
\author{corinne\_montpetit}
\pdfinfo{
  /Title (chemistry.pdf)
  /Creator (Cheatography)
  /Author (corinne\_montpetit)
  /Subject (Chemistry Cheat Sheet)
}

% Lengths and widths
\addtolength{\textwidth}{6cm}
\addtolength{\textheight}{-1cm}
\addtolength{\hoffset}{-3cm}
\addtolength{\voffset}{-2cm}
\setlength{\tabcolsep}{0.2cm} % Space between columns
\setlength{\headsep}{-12pt} % Reduce space between header and content
\setlength{\headheight}{85pt} % If less, LaTeX automatically increases it
\renewcommand{\footrulewidth}{0pt} % Remove footer line
\renewcommand{\headrulewidth}{0pt} % Remove header line
\renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit
% This two commands together give roughly
% the right line height in the tables
\renewcommand{\arraystretch}{1.3}
\onehalfspacing

% Commands
\newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour
\newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols
\newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns
\newcommand{\tn}{\tabularnewline} % Required as custom column type in use

% Font and Colours
\definecolor{HeadBackground}{HTML}{333333}
\definecolor{FootBackground}{HTML}{666666}
\definecolor{TextColor}{HTML}{333333}
\definecolor{DarkBackground}{HTML}{1E90FF}
\definecolor{LightBackground}{HTML}{F0F8FF}
\renewcommand{\familydefault}{\sfdefault}
\color{TextColor}

% Header and Footer
\pagestyle{fancy}
\fancyhead{} % Set header to blank
\fancyfoot{} % Set footer to blank
\fancyhead[L]{
\noindent
\begin{multicols}{3}
\begin{tabulary}{5.8cm}{C}
    \SetRowColor{DarkBackground}
    \vspace{-7pt}
    {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent
        \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}}
    }
\end{tabulary}
\columnbreak
\begin{tabulary}{11cm}{L}
    \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Chemistry Cheat Sheet}}}} \\
    \normalsize{by \textcolor{DarkBackground}{corinne\_montpetit} via \textcolor{DarkBackground}{\uline{cheatography.com/44281/cs/13137/}}}
\end{tabulary}
\end{multicols}}

\fancyfoot[L]{ \footnotesize
\noindent
\begin{multicols}{3}
\begin{tabulary}{5.8cm}{LL}
  \SetRowColor{FootBackground}
  \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}}  \\
  \vspace{-2pt}corinne\_montpetit \\
  \uline{cheatography.com/corinne-montpetit} \\
  \end{tabulary}
\vfill
\columnbreak
\begin{tabulary}{5.8cm}{L}
  \SetRowColor{FootBackground}
  \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}}  \\
   \vspace{-2pt}Not Yet Published.\\
   Updated 13th October, 2017.\\
   Page {\thepage} of \pageref{LastPage}.
\end{tabulary}
\vfill
\columnbreak
\begin{tabulary}{5.8cm}{L}
  \SetRowColor{FootBackground}
  \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}}  \\
  \SetRowColor{white}
  \vspace{-5pt}
  %\includegraphics[width=48px,height=48px]{dave.jpeg}
  Measure your website readability!\\
  www.readability-score.com
\end{tabulary}
\end{multicols}}




\begin{document}
\raggedright
\raggedcolumns

% Set font size to small. Switch to any value
% from this page to resize cheat sheet text:
% www.emerson.emory.edu/services/latex/latex_169.html
\footnotesize % Small font.

\begin{multicols*}{3}

\begin{tabularx}{5.377cm}{x{1.12779 cm} x{1.08602 cm} x{1.04425 cm} x{0.91894 cm} }
\SetRowColor{DarkBackground}
\mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{The 4 Quantum Numbers}}  \tn
% Row 0
\SetRowColor{LightBackground}
\{\{ac\}\}Principle Quantum Number & \{\{ac\}\}Secondary Quantum Number & \{\{ac\}\}Magnetic Quantum Number & \{\{ac\}\}Spin Quantum Number \tn 
% Row Count 4 (+ 4)
% Row 1
\SetRowColor{white}
\{\{ac\}\}n & \{\{ac\}\}l & \{\{ac\}\}m`l` & \{\{ac\}\}m`s` \tn 
% Row Count 6 (+ 2)
\hhline{>{\arrayrulecolor{DarkBackground}}----}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Electron Configurations}}  \tn
% Row 0
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{Electrons fill orbitals from {\bf{lowest to highest}} energy. Therefore, orbital 1s fills before 2s and 2p. However, an orbit does not necessarily fill completely before the next begins.} \tn 
% Row Count 4 (+ 4)
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Types of Bonds}}  \tn
% Row 0
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{{\bf{IONIC}}\{\{nl\}\}- metals give electrons to non-metals\{\{nl\}\}- metals form cations ({\bf{+}})\{\{nl\}\}- non-metals form anions ({\bf{-}})\{\{nl\}\}- this gives both atoms a stable electron configuration\{\{nl\}\}- the energy level of each atom is decreased} \tn 
% Row Count 5 (+ 5)
% Row 1
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{\{\{ac\}\}If attraction outweighs repulsion, then a bond will form} \tn 
% Row Count 7 (+ 2)
% Row 2
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{Characteristics\{\{nl\}\}- conductive in the dissolved or molten state\{\{nl\}\}- solid, hard, brittle\{\{nl\}\}- {\bf{high}} melting point, {\bf{low}} boiling point} \tn 
% Row Count 10 (+ 3)
% Row 3
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{{\bf{COVALENT BONDING}}\{\{nl\}\}1. Non-polar\{\{fa-caret-right\}\}equal sharing of electrons for bonds\{\{nl\}\}2. Polar\{\{fa-caret-right\}\}unequal sharing of electrons, atom with higher \{\{fa-caret-up\}\}EN is slightly {\bf{+}}, lower  \{\{fa-caret-up\}\}EN is slightly {\bf{-}}\{\{nl\}\}3. Coordinate Covalent Bonds\{\{fa-caret-right\}\}- both electrons forming the bond come from the same atom} \tn 
% Row Count 18 (+ 8)
% Row 4
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{Characteristics\{\{nl\}\}- generally low boiling points\{\{nl\}\}- solid, liquid, gas\{\{nl\}\}- do not conduct electricity\{\{nl\}\}- dull\{\{nl\}\}- don't dissolve in water} \tn 
% Row Count 22 (+ 4)
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Intermolecular Forces}}  \tn
% Row 0
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{\{\{ac\}\}An attraction holding neighbouring molecules or ions together. {\bf{These are not bonds}}} \tn 
% Row Count 2 (+ 2)
% Row 1
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{1. {\bf{Ion-Ion}}\{\{fa-long-arrow-right\}\} whole charges attract} \tn 
% Row Count 4 (+ 2)
% Row 2
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{2. {\bf{Ion-Dipole}}\{\{fa-long-arrow-right\}\} an ion is attracted to a polar molecule. The cation is attracted to the slightly negative portion of polar molecules and the anion to the slightly positive end} \tn 
% Row Count 8 (+ 4)
% Row 3
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{3. {\bf{Dipole-Dipole}}\{\{fa-long-arrow-right\}\} the attraction between oppositely charged dipoles of 2 polar molecules\{\{nl\}\}- strength depends on the polarity of the molecule (more polar=stronger dipole force)\{\{nl\}\}- H-bonding is a special type which is the strongest (5\% of covalent bond strength)\{\{nl\}\}- H bonded to N, O, F\{\{nl\}\}- a lone pair of electrons must be on the neighbouring molecule for the H to bond with\{\{nl\}\}- strength depends on the number of H bonds} \tn 
% Row Count 18 (+ 10)
% Row 4
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{4. {\bf{Dipole-Induced Dipole}}\{\{fa-long-arrow-right\}\}- nonpolar molecule forced into polarity} \tn 
% Row Count 20 (+ 2)
% Row 5
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{4. {\bf{Induced Dipole-Induced Dipole}}\{\{fa-long-arrow-right\}\} a.k.a. London Dispersion Forces\{\{nl\}\}- the random motion of electrons creates a temporary dipole in one nonpolar molecule. This induces polarity in the neighbouring molecule. Strength depends on \# of electrons (and protons) in a molecule.} \tn 
% Row Count 26 (+ 6)
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} }
\SetRowColor{DarkBackground}
\mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Types of Solids}}  \tn
% Row 0
\SetRowColor{LightBackground}
{\bf{Metallic Crystals}} (Metallic Bonding) & - valence electrons from a mobile sea of electrons which comprise the metallic bond\{\{nl\}\}- high melting and boiling points \tn 
% Row Count 7 (+ 7)
% Row 1
\SetRowColor{white}
{\bf{Ionic Crystals}} (Ionic Bonding) & - attraction of charged ions for one another. Lattice energy is a measure of ionic strength\{\{nl\}\}- high melting and boiling points \tn 
% Row Count 14 (+ 7)
% Row 2
\SetRowColor{LightBackground}
{\bf{Covalent Crystals}} (Network Covalent Bonding) & - network solids are extremely hard compounds with very high melting and boiling points due to their endless 3-D network of covalent bonds \tn 
% Row Count 21 (+ 7)
% Row 3
\SetRowColor{white}
{\bf{Molecular Crystals}} a)H-bonding\{\{nl\}\}b)LDF\{\{nl\}\}c)Dipole-Dipole Forces & a) H-bonds are weaker than covalent bonds, but stronger than b) or c) below\{\{nl\}\}b) universal force of attraction between instantaneous dipoles. These forces are weak for small, low-molecular weight molecules, but large for heavy, long/highly polarizable molecules. They are stronger than c) below\{\{nl\}\}c) these forces act between {\bf{polar}} molecules. They are much weaker than H-bonding \tn 
% Row Count 41 (+ 20)
\end{tabularx}
\par\addvspace{1.3em}

\vfill
\columnbreak
\begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} }
\SetRowColor{DarkBackground}
\mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Types of Solids (cont)}}  \tn
% Row 4
\SetRowColor{LightBackground}
{\bf{Atomic Crystals}}\{\{nl\}\}(Dispersion Forces) & - see section b) above \tn 
% Row Count 3 (+ 3)
\hhline{>{\arrayrulecolor{DarkBackground}}--}
\SetRowColor{LightBackground}
\mymulticolumn{2}{x{5.377cm}}{{\bf{Physical properties}} depend on these forces. The {\bf{stronger}} the forces between particles,\{\{nl\}\}- the\{\{fa-arrow-up\}\}the melting and boiling point\{\{nl\}\}- the\{\{fa-arrow-down\}\}the vapour pressure\{\{nl\}\}- the\{\{fa-arrow-up\}\} the viscosity\{\{nl\}\}- the {\bf{greater}} the surface tension}  \tn 
\hhline{>{\arrayrulecolor{DarkBackground}}--}
\end{tabularx}
\par\addvspace{1.3em}


% That's all folks
\end{multicols*}

\end{document}