Cheatography

Chemistry Cheat Sheet by corinne_montpetit via cheatography.com/44281/cs/13137/

The 4 Quantum Numbers				
Principle	Secondary	Magnetic	Spin	
Quantum	Quantum	Quantum	Quantum	
Number	Number	Number	Number	
n	I	ml	ms	

Electron Configurations

Electrons fill orbitals from lowest to highest energy. Therefore, orbital 1s fills before 2s and 2p. However, an orbit does not necessarily fill completely before the next begins.

Types of Bonds

IONIC

- metals give electrons to non-metals
- metals form cations (+)
- non-metals form anions (-)
- this gives both atoms a stable electron configuration
- the energy level of each atom is decreased
 - If attraction outweighs repulsion, then a bond will form

Characteristics

- conductive in the dissolved or molten state
- solid, hard, brittle
- high melting point, low boiling point

COVALENT BONDING

1. Non-polar > equal sharing of electrons for bonds

2. Polar ▶ unequal sharing of electrons,

atom with higher A EN is slightly +, lower ▲ EN is slightly -

3. Coordinate Covalent Bonds ▶ - both electrons forming the bond come from the same atom

Characteristics

- generally low boiling points

- solid, liquid, gas
- do not conduct electricity
- dull
- don't dissolve in water

Intermolecular Forces

Intermolecular Forces (cont)

3. Dipole-Dipole→ the attraction between oppositely charged dipoles of 2 polar molecules

- strength depends on the polarity of the molecule (more polar=stronger dipole force)
- H-bonding is a special type which is the strongest (5% of covalent bond strength) - H bonded to N, O, F
- a lone pair of electrons must be on the

neighbouring molecule for the H to bond with

- strength depends on the number of H bonds

4. Dipole-Induced Dipole →- nonpolar molecule forced into polarity

4. Induced Dipole-Induced Dipole \rightarrow a.k.a. London Dispersion Forces

- the random motion of electrons creates a temporary dipole in one nonpolar molecule. This induces polarity in the neighbouring molecule. Strength depends on # of electrons (and protons) in a molecule.

Types of Solids

Metallic Crystals (Metallic Bonding)	 valence electrons from a mobile sea of electrons which comprise the metallic bond high melting and boiling points
lonic Crystals (Ionic Bonding)	 attraction of charged ions for one another. Lattice energy is a measure of ionic strength high melting and boiling points
Covalent Crystals (Network Covalent Bonding)	 network solids are extremely hard compounds with very high melting and boiling points due to their endless 3-D network of covalent bonds

Types of Solids (cont)

Molecular	a) H-bonds are weaker than
Crystals	covalent bonds, but stronger
a)H-	than b) or c) below
bonding	b) universal force of attraction
b)LDF	between instantaneous
c)Dipole-	dipoles. These forces are
Dipole	weak for small, low-molecular
Forces	weight molecules, but large
	for heavy, long/highly polari-
	zable molecules. They are
	stronger than c) below
	c) these forces act between
	polar molecules. They are
	much weaker than H-bonding
Atomic	- see section b) above
Crystals	
(Dispersion	
Forces)	

Physical properties depend on these forces. The stronger the forces between particles,

- the the melting and boiling point
- the + the vapour pressure
- the the viscosity
- the greater the surface tension

An attraction holding neighbouring molecules or ions together. These are not bonds

1. **Ion-Ion** \rightarrow whole charges attract

2. **Ion-Dipole** \rightarrow an ion is attracted to a polar molecule. The cation is attracted to the slightly negative portion of polar molecules and the anion to the slightly positive end

By corinne_montpetit cheatography.com/corinnemontpetit/ Not published yet. Last updated 13th October, 2017. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com