

What is DNA?

DNA- deoxyribonucleic acid, the hereditary material of life in a cell's nucleus

genes- carries codes for traits

trait- characteristic of an organism

acquired trait- from your parents

environmental trait- from the surrounding environment

chromosomes contain **genes** which are made of **DNA**

Genes are inherited from your parents. Each gene codes for 1 trait, and thousands of genes are on each chromosome. Chromosomes in humans are arranged into 23 homologous pairs

DNA Structure

DNA is a **double helix**, and consists of **phosphate**, **deoxyribose sugar**, and **nitrogen bases**. Phosphate and sugar make the backbone, and nitrogen bases are the rungs of the ladder.

nucleotide- a phosphate paired with a nitrogen base and deoxyribose sugar

histone- special proteins that prevent DNA from tangling

nucleosome- DNA and histone packages which resemble beads

telomere- protective end on eukaryotic cells that shortens every time DNA replicates

The 4 Nitrogen Bases

PURINES

(single-ringed)

PYRIMIDINES

(double-ringed)

Adenine to → Thymine with 2 H-bonds

Guanine to → Cytosine with 3 H-bonds

What Causes Genetic Diversity?

1. Crossing over in **prophase I**

2. Independent assortment in **metaphase I** and **II**. The chromosomes line up randomly each time.

Non-Disjunction

non-disjunction- a mistake that occurs during anaphase I and II, when the chromosomes do not separate and gametes end up having the wrong number

Mitosis vs Meiosis

MITOSIS	BOTH	MEIOSIS
- all daughter cells are somatic	- both for the purpose of reproduction	- all daughter cells are gametes
- 2 similar cells are produced	- both create daughter cells	- 4 different cells are produced
- 46 chromosomes		- 23 chromosomes
- DNA is not crossed over		- DNA is crossed over

Meiosis I and Meiosis II

MEIOSIS I	MEIOSIS II
Prophase I centrioles move to opposite poles, homologous chromosomes become visible and form tetrads , crossing over occurs, genetic material is exchanged	Prophase II - centrioles move to opposite poles, chromosome pairs become visible, crossing over does NOT occur
Metaphase I - tetrads line up along the equator of the cell (staying as a pair)	Metaphase II - each chromosome moves to the equator of the cell
Anaphase I - homologous chromosomes are pulled apart creating whole paired chromosomes on each side	Anaphase II - each chromosome splits and moves to opposite poles, the chromatid is now considered the chromosome
Telophase I - nuclear membrane reforms, cytokinesis occurs, creating 2 diploid cells , which contain 46 chromosomes and are genetically different	Telophase II - nuclear membrane reforms, cytokinesis occurs, creating 4 haploid cells called gametes

Prokaryotes vs Eukaryotes

PROKARYOTES	BOTH	EUKARYOTES
- no nucleus or organelles	- both forms of life	- nucleus and organelles
- simple and primitive		- complex cells

By corinne_montpetit
cheatography.com/corinne_montpetit/

Published 20th October, 2017.

Last updated 20th October, 2017.

Page 1 of 2.

Sponsored by **Readable.com**
Measure your website readability!
<https://readable.com>

Prokaryotes vs Eukaryotes (cont)

- usually single-celled
- can be multicellular

Meiosis Definitions

zygote- cell created when egg and sperm unite

karyotype- map of chromosomes organized into homologous pairs

diploid- total # of chromosomes in an organism, **somatic cells**

haploid- half the # of chromosomes in an organism, **sex cells**

Purpose of Mitosis and Meiosis

MITOSIS

1. Asexual Reproduction
 - 1 parent with identical offspring
2. Repair
 - to fix damaged cells and replace old cells
3. Growth
 - nuclear division, and depends on the size and growth of the organism

MEIOSIS

1. Create Gametes
 - creates egg/sperm or egg/pollen
 - 2 parents with genetically different offspring

Trisomies and Traits

Trisomy 13, Patau Syndrome heart defects, brain and spinal cord abnormalities, extra fingers and toes, cleft lip, usu. die by 1 yr. old

Trisomy 18, Edward Syndrome abnormally shaped head, clenched fists, heart defects, usu. die by 1 yr. old

Trisomy 21, Down Syndrome mild disability, can still form relationships and interact in society

Trisomy XYY, Klinefelter Syndrome infertile males, look childish, high pitched voice, learning disabilities

Mutation

mutation- any change made to DNA

4 Types of Mutations

1. **Translocation** - part of a chromosome breaks off and attaches itself to a different chromosome
 - Translocation Down's
2. **Deletion** - part of a chromosome is deleted
 - Prader Willi Syndrome → learning disabilities, behavioral problems, obesity, short stature, etc.
3. **Duplication** - part of the chromosome is repeated
 - cause of seizures
4. **Inversion** - genetic code is flipped
 - linked to infertility problems

By **corinne_montpetit**
cheatography.com/corinne-montpetit/

Published 20th October, 2017.
Last updated 20th October, 2017.
Page 2 of 2.

Sponsored by **Readable.com**
Measure your website readability!
<https://readable.com>