Geometry Final Cheat Sheet by ColdZera via cheatography.com/28389/cs/8343/

Vocabulary	
Segment	Part of a line consisting of two end points and the points between them
Ray	Part of a line consisting of an end point and all the points to one side
Opposite rays	2 collinear rays with the same endpoint; forms a line
Parallel Lines	Coplaner lines that do not intersect
Skew Lines	Non-coplaner lines that do not intersect
Parallel Planes	Planes that do not intersect
Congruent Segments	2 segments with the same length
Midpoint	Point on a segment that divides a segment into 2 congruent segments
Angle	Formed by two rays with the same endpoint.
Acute Angle	Angle Greater than 0 and less than 90
Right angle	90 degree angle
Obtuse angle	Angle greater than 90 but less than 180
Straight Angle	180 degree angle
Congruent angles	Angles with the same measure
Vertical angles	Opposite angles formed by intersecting lines
Adjecent angles	2 coplaner angles that share a common vertex and a common side
Complementary angles	2 angles that add up to 90 degrees
Supplementry angles	2 angles that add up to 180 degrees
Conditional	An if/then statement
Hypothesis	What follows the If in a conditional
Conclusion	What follows the then in a conditional
Truth Value	If a conditional is true or false

Vocabulary (cor	nt)
Converse	Palendrome of a conditional
Biconditional	The combination of a conditional statement and its converse
Deductive Reasoning/Logi cal Thinking	The process of reasoning from a given statement to a conclusion
Negation	Opposite of the truth value
Inverse	Negates both the hypothesis and the conclusion
Contraposotove	Switches the hypothesis and the conclusion and negates both
Transversal	A line that intersects 2 or more coplaner lines at distinct points
Equiangular Triangle	All angles are congruent
Acute Tringle	all angles are acute
Right Triangle	one right angle
Obtuse Triangle	one obtuse angle
Equalateral Triangle	All sides are congruent
lsosceles Triangle	2 congruent sides
Scalene Triangle	No congruent sides
Exterior angle	Angle formed by a side and an extention of an adjacent side
Polygon	A closed plane figure with at least 3 sides that are segments. The sides only intersect at end points, no adjacent sides are congruent
Convex Polygons	No "dents"
Concave polygon	Has a "dent" or "dents"
Equilateral Polygon	a polygon where all sides are congruent
Equiangular polygon	a polygon where all angles are congruent
regular polygon	a polygon that is both equiangular and equalateral
Congruent Polygons	Polygons with congruent corresponding sides and angles
Corollary	a statement that follows directly from a theorem

By **ColdZera** cheatography.com/coldzera/

Published 4th June, 2016. Last updated 4th June, 2016. Page 1 of 6.

Geometry Final Cheat Sheet by ColdZera via cheatography.com/28389/cs/8343/

Vocabulary (cor	nt)
Midsegment	a segment that connects the midpoints of 2 sides of a triangle
Perpendicular Bisector	a line segment or ray that is perpendicular to a segment through its midpoint
Concurrent	When 3 or more lines intersect in one point
Point of concurrency	Point where 3 concurrent lines intersect
Circumcenter	The point of concurrency of the perpendicular bisectors of a triangle
circumscribed circle	circle that passes through all the vertices of a triangle
Obtuse Circumcenter	Lies outside the triangle
Right Circumcenter	midpoint of the hypotenuse
Acute circumcenter	Lies within the triangle
Angle Bisector	Ray that divides an angle into to congruent segments
Incenter	Point of concurrency of the angle bisectors of a triangle
Inscribed Circle	Largest circle contained in a triangle that touches all three sides
Median	Segment whose endpoints are a vertex and the midpoint of the opposite side
centroid	point of concurrency of the medians; always lies within the triangle
Altitude	Height of a triangle
Quadrilateral	Polygon with 4 sides
Parallelogram	A quadrilateral with 2 pairs of opposite parallel sides
Rhombus	Quadrilateral with all sides congruent and 2 pairs of opposite parallel sides
Rectangle	Parallelogram with four right angles
Square	A parallelogram with four congruent sides and four right angles

Vocabulary (cont)		
Kite	Quadrilateral with two pairs of adjacent sides congruent and no opposite sides congruent	
Trapezoid	A quadrilateral with exaclty one pair of parallel sides	
lsosceles Trapezoid	A trapezoid whose non-parallel sides are congruent	
Consecutive Angles	Angles of a polygon that share a side; are supplementary	
Base angles	two angles that share a base of a trapezoid	
Proportion	a statement that 2 ratios are equal	
Indirect Measurement	Used to find the lengths of objects that are too difficult to measure directly	
Vector	any quantity with magnitude (size) and direction	
Magnitude	Distance from initial point to terminal point	
Tangent line to a circle	A line on the same plane as a circle that intersects the circle at exactly one point	
point of tangency	point where a circle and tangent line intersect	
Apothem	Perpendicular distance from the center of a regular polygon	
Circle	The set of all points in a plane equidistant to a given point called the center	
radius	a segment w/ one endpoint at the center and the other in the circle	
Diameter	a segment that contains the center and has both endpoints on a circle	
Congruent circles	circles with congruent radii or diameters	
central angle	an angle whose vertex is the center of the circle	
Arc	Part of circle	

С

By ColdZera

cheatography.com/coldzera/

Published 4th June, 2016. Last updated 4th June, 2016. Page 2 of 6.

Geometry Final Cheat Sheet by ColdZera via cheatography.com/28389/cs/8343/

Vocabulary (co	nt)
Semi-circle	Half a circle
Minor Arc	Smaller than a semi-circle
Major arc	Greater than a semi circle
adjacent arc	arcs of the same circle that have exactly one point in common
Circumference	Perimeter of a circle
concentric circles	coplanar circles that share a center

All the other crap continued

		Addition Property	A=B, then
Theorem 12-1	If a line is tangent to a circle, then the line is perpendicular to the radius drawn to the point of tangency	Subtraction Property	A=B, then
Theorem 12-2	If a line is in the plane of a circle is a radius at its endpoint on the circle, then the line is tangent to the	Multiplication Property	A=B, then
	circle	Division Property	A=B and C
Theorem 12-3	The two segments tangent to a circle from a point	Reflexive Property	A=A
	outside the circle are congruent	Symmetric	A=B and E
Perimiter of a Square	4S	Property Transitive	A=B and E
Area of a Square	S ²	Property	A-D and L
Perimiter of a Rectangle/Parallel	2B+2H	Substitution Property	A=B, so B
ogram		Distributive	A(B+C)= A
Area of a Rectangle/Parallel	ВН	property	
ogram		Congruent Supplements	If 2 ngles a congruent
Circumference	PiD or 2PiR	Theorem	-
Area of a Circle	PiR ²	Congruent	If 2 angles
Perimiter of a Triangle	S1+S2+S3	Complements Theorem	congruent
Area of a Triangle	.5(b*h)	Right Angle Congruence	All right an
Area of a	.5(b1*b2)h	Corresponding	Implys par
Trapezoid Area of a	.5(d1*d2)	angles are	
Rhombus/Kite		congruent Alternate Interior	
Area of Regular Polygons	.5AP	angles are congruent	Implys par
Arc Addition Postulate	The whole is equal to the sum of its parts	Same side Interior angles are	Implys par
Arc Length		supplementry	

Postulates, Formulas, etc...

Ruler Postulate The points of a line can be put into 1:1 correspondence with the real numbers AB=|A-B| Segment addition If three points (A,B,C) are colliner and B is between postulate A and C, then AB+BC=AC; The whole is equal to te sum of its parts Vertical Angles Vertical angles are congruent Theorem If P->Q and P is true, then Q is true Law of detachment If P->Q and Q->R are true, then P->R is true Law of syllogism n A+C=B+C n A-C=B-C n A*C=B*C C is not 0, then (A/C)=(B/C) B=A B=C, then A=C B can replace A in equations AB+AC are supplements of the same angle or of t angles, then that angles are congruent es are complements of the same angle or of t angles, then the 2 angles are congruent ngles are congruent arallel lines arallel lines arallel lines

By ColdZera cheatography.com/coldzera/

Published 4th June, 2016. Last updated 4th June, 2016. Page 3 of 6.

Geometry Final Cheat Sheet by ColdZera via cheatography.com/28389/cs/8343/

Postulates, Formulas, etc (cont)		Postulates, Form	ulas, etc (cont)
Alternate exterior angles are congruent	Implys parallel lines	AAS; Angle Angle Side	If 2 angles and a non-included side of a triangle are congruent to 2 angles and non-included side of another triangle, then they are congruent
Same side Exterior angles are supplementry	Implys parallel lines	Isosceles Triangle Theorem	If the 2 sides of a triangle are congruent, then the base angles are congruent
If two lines are parallel to the same line	Then they are Parallel	Converse Isosceles Triangle	If the 2 base angles of a triangle are congruent, then the sides are congruent
If 2 coplaner lines are perpendicular to the same line	then they are parallel	Theorem HL; Hypotenuse Leg	If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and leg of another right
Sum of a triangle's angle measures	180 degrees	Triangle	triangle, then they are congruent If a segment joins the midpoints if 2 sides of a
Triangle exterior angle Theorem	The measure of each exterior angle of a triangle equals the sum of it's two remote exterior angles	Midsegment theorem	triangle, then the segment is parallel to the third side and is half the length
Degrees in a Quadrilateral	360	Perpendicular Bisector theorem	If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment
Degrees on a Pentagon	540	Converse of the	If a point is equidistant from the endpoints of a
Degrees in a hexagon	720	Perpendicular Bisector theorem	segment, then it is on the perpendicular bisector of the segment
Degrees in a octagon	1080	Angle Bisector theorem	If a point is on the angle bisector of an angle, then the point is wquidistant to the sides of the angle
Theorem 4-1	If two angles of one triangle are congruent to two angles of another triangle, then they are congruent	the converse of the Angle Bisector theorem	If a point in the interior of an angle is equidistant to the sides of the angle, then the point is on the angle bisector
CPCTC	Corresponding Parts of Congruent Triangles are congruent		
SSS; Side Side Side	If 3 sides of a triangle are congruent to 3 sides of another triangle, then they are congruent		
SAS; Side Angle Side	If 2 sides and 1 included angle of a triangle are congruent to the 2 sides and angle of another triangle, then they are congruent		
ASA; Angle Side Angle	If 2 angles and an included side of a triangle are congruent to 2 angles and included side of another triangle, then they are congruent		

By ColdZera

cheatography.com/coldzera/

Published 4th June, 2016. Last updated 4th June, 2016. Page 4 of 6.

Geometry Final Cheat Sheet by ColdZera via cheatography.com/28389/cs/8343/

Postulates, Formulas, etc (cont)	
Theorem 5- 6	The perpendicular bisectors of the sides of a triangle are concurrent at a point equidistant from the vertices
Theorem 5- 7	The Bisectors of the angles of a triangle are concurrent at a point equidistant from the sides
Theorem 5- 8	The mediams of a triangle are concurrent at a point that is two thirds the distnce from each vertex to the mid point of the opposite side
Theorem 5- 9	The Lines that contain the altitudes of a triangle are concurrent
Comparison Property	If A=B+C and C>0, then A>B
Distance form	nula
Midpoint Form	nula
Slope Intercept Form	Y=Mx+B
Standard Form	Ax+By=C
Point Slope Form	Y-Y ¹ =M(X-X ¹)
Theorem 6- 1	Opposite sides of a parallelogram are congruent
Theorem 6- 2	Opposite angles of a parallelogram are congruent
Theorem 6- 3	The diagonals of a parallelogram bisect each other
Theorem 6- 4	If three or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal
Theorem 6- 5	If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram
Theorem 6- 6	If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram

Postulates,	Formulas, etc (cont)
Theorem 6-7	If the diagonals of a quadrilateral bisect each other then the quadrilateral is a parallelogram
Theorem 6-8	if one pair of opposite sides of a quadrilateral are both parallel and congruent, then the quadrilateral is a parallelogram
Theorem 6-9	Each diagonal of a rhombus bisects 2 angles of the rhombus
Theorem 6-10	The diagonals of a rhombus are perpendicular
Theorem 6-11	The Diagonals of a rectangle are congruent
Theorem 6-12	If one diagonal of a parallelogram bisects 2 angles of the parallelogram, then it is a rhombus
Theorem 6-13	If the diagonals of a parallelogram are perpendicular, then it is a rhombus
Theorem 6-14	If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle
Theorem 6-15	The Base angles of an isosceles trapezoid are congruent
theorem 6- 16	Diagonals of an isosceles trapezoid are congruent
AA~; angle angle similarity	If 2 angles of one triangle are congruent to 2 angles of another triangle, then they are similar
SAS~; Side Angle Side similarity	If an angle of one triangle is congruent to an angle of an angle of a second triangle, and the sides surrounding the angle are propotional, then they are similar

By ColdZera

cheatography.com/coldzera/

Published 4th June, 2016. Last updated 4th June, 2016. Page 5 of 6. Sponsored by **Readability-Score.com** Measure your website readability!

https://readability-score.com

Geometry Final Cheat Sheet by ColdZera via cheatography.com/28389/cs/8343/

Postulates, Formulas, etc (cont)	
SSS~; Side Side Side similarity	If the corresponding sides of two triangles are proportional, then they are similar
Theorem 7- 3	The altitude to the hypotenuse of a right triangle divides the triangle into 2 triangles that are similar to the original and eachother
Corollary 1 to Theorem 7-3	The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the segments of the hypotenuse
Corollary 2 to Theorem 7-3	The altitude of the hypotenuse of a right triangle separates the hypotenuse so that the length of each leg of the triangle is the geometric mean of the length of the adjacent hypotenuse segment and the length of the hypotenuse
Side- Splitter Theorem	If a line is parallel to one side of a triangle and intersects the other two sides, then its divides those sides proportionally
Corollary to Side- Splitter	If three parallel lines intersect 2 transversals, then the segments intercepted on the transversals are proportional
Theorem 7- 5	If a ray bisects an angle of a triangle, then it divides the opposite side into two segments that are proportional to the other two sides of the triangle
Pythagorea n Theorem	A ² +B ² =C ²
Pythagoren Triples	{3,4,5} {5,12,13} {8,15,17} {7,24,25}
C ² =A ² +B 2	Right Triangle
C ² >A ² +B 2	Obtuse Triangle

Postulates, Formulas, etc (cont)	
C ² <a<sup>2+B 2</a<sup>	Acute Triangle
45-45-90 Triangle	In a 45-45-90 triangle, both legs are congruent and the length of the hypotenuse is square root of 2 times the length of a leg
30-60-90 Triangle	The Hypotenuse is double the length of the shortest leg and the length of the longer leg is square root of 3 times the length of the shorter leg
Tangent	Opposite/Adjacent
Sine	Opposite/Hypotenuse
Cosine	Adjacent/Hypotenuse
SohCahToa	You know what this means, dummy

С

By ColdZera cheatography.com/coldzera/

Published 4th June, 2016. Last updated 4th June, 2016. Page 6 of 6.

Sponsored by Readability-Score.com

Measure your website readability! https://readability-score.com