
OWASP Top 10 Vulnerabilities Cheat Sheet
by Cam (clucinvt) via cheatography.com/55263/cs/14762/

Cheatsheet versionCheatsheet version

Version 1.0.0

Last update 3/30/2018

OWASP version 2017

1. Injection1. Injection

Injection flaws are very prevalent, particularly in legacy code.
Injection vulnerabilities are often found in SQL, LDAP, XPath, or
NoSQL queries, OS commands, XML parsers, SMTP headers,
expression languages, and ORM queries.
An application is vulnerable to attack when:
• User-supplied data is not validated, filtered, or sanitized by the
application.
• Dynamic queries or non-parameterized calls without contextaware
escaping are used directly in the interpreter.
• Hostile data is used within object-relational mapping (ORM) search
parameters to extract additional, sensitive records.
• Hostile data is directly used or concatenated, such that the SQL or
command contains both structure and hostile data in dynamic
queries, commands, or stored procedures.

2. Broken authentication2. Broken authentication

There may be authentication weaknesses if the application:
• Permits automated attacks such as credential stuffing, where the
attacker has a list of valid usernames and passwords.
• Permits brute force or other automated attacks.
• Permits default, weak, or well-known passwords, such as "Passwo‐
rd1" or "admin/admin“.
• Uses weak or ineffective credential recovery and forgot password
processes, such as "knowledge-based answers", which cannot be
made safe.
• Uses plain text, encrypted, or weakly hashed passwords.
• Has missing or ineffective multi-factor authentication.
• Exposes Session IDs in the URL (e.g., URL rewriting).
• Does not rotate Session IDs after successful login.
• Does not properly invalidate Session IDs. User sessions or authen‐
tication tokens (particularly single sign-on (SSO) tokens) aren’t
properly invalidated during logout or a period of inactivity.

 

3. Sensitive data exposure3. Sensitive data exposure

The first thing is to determine the protection needs of data in transit
and at rest. For example, passwords, credit card numbers, health
records, personal information and business secrets require extra
protection, particularly if that data falls under privacy laws, e.g. EU's
General Data Protection Regulation
(GDPR), or regulations, e.g. financial data protection such as PCI
Data Security Standard (PCI DSS). For all such data:
• Is any data transmitted in clear text? This concerns protocols such
as HTTP, SMTP, and FTP. External internet traffic is especially
dangerous. Verify all internal traffic e.g. between load balancers,
web servers, or back-end systems.
• Is sensitive data stored in clear text, including backups?
• Are any old or weak cryptographic algorithms used either by
default or in older code?
• Are default crypto keys in use, weak crypto keys generated or re-
used, or is proper key management or rotation missing?
• Is encryption not enforced, e.g. are any user agent (browser)
security directives or headers missing?
• Does the user agent (e.g. app, mail client) not verify if the received
server certificate is valid?

4. XML External Entities (XEE)4. XML External Entities (XEE)

Applications and in particular XML-based web services or
downstream integrations might be vulnerable to attack if:
• The application accepts XML directly or XML uploads, especially
from untrusted sources, or inserts untrusted data into XML
documents, which is then parsed by an XML processor.
• Any of the XML processors in the application or SOAP based web
services has document type definitions (DTDs) enabled. As the exact
mechanism for disabling DTD processing varies by processor, it is
good practice to consult a reference such as the OWASP Cheat
Sheet 'XXE Prevention’.
• If your application uses SAML for identity processing within
federated security or single sign on (SSO) purposes. SAML uses
XML for identity assertions, and may be vulnerable.
• If the application uses SOAP prior to version 1.2, it is likely suscep‐
tible to XXE attacks if XML entities are being passed to the SOAP
framework.
• Being vulnerable to XXE attacks likely means that the application is
vulnerable to denial of service attacks including the Billion Laughs
attack.

By CamCam (clucinvt)
cheatography.com/clucinvt/
camluc.tech

 
Published 30th March, 2018.
Last updated 30th March, 2018.
Page 1 of 3.

 
Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/clucinvt/
http://www.cheatography.com/clucinvt/cheat-sheets/owasp-top-10-vulnerabilities
http://www.cheatography.com/clucinvt/
http://camluc.tech
http://crosswordcheats.com


OWASP Top 10 Vulnerabilities Cheat Sheet
by Cam (clucinvt) via cheatography.com/55263/cs/14762/

5. Broken access control5. Broken access control

Access control enforces policy such that users cannot act outside of
their intended permissions. Failures typically lead to unauthorized
information disclosure, modification or destruction of all data, or
performing a business function outside of the limits of the user.
Common access control vulnerabilities include:
• Bypassing access control checks by modifying the URL, internal
application state, or the HTML page, or simply using a custom API
attack tool.
• Allowing the primary key to be changed to another users record,
permitting viewing or editing someone else's account.
• Elevation of privilege. Acting as a user without being logged in, or
acting as an admin when logged in as a user.
• Metadata manipulation, such as replaying or tampering with a
JSON Web Token (JWT) access control token or a cookie or hidden
field manipulated to elevate privileges, or abusing JWT invalidation
• CORS misconfiguration allows unauthorized API access.
• Force browsing to authenticated pages as an unauthenticated user
or to privileged pages as a standard user. Accessing API with
missing access controls for POST, PUT and DELETE.

6. Security misconfiguration6. Security misconfiguration

The application might be vulnerable if the application is:
• Missing appropriate security hardening across any part of the
application stack, or improperly configured permissions on cloud
services.
• Unnecessary features are enabled or installed (e.g. unnecessary
ports, services, pages, accounts, or privileges).
• Default accounts and their passwords still enabled and unchanged.
• Error handling reveals stack traces or other overly informative error
messages to users.
• For upgraded systems, latest security features are disabled or not
configured securely.
• The security settings in the application servers, application
frameworks (e.g. Struts, Spring, ASP.NET), libraries, databases, etc.
not set to secure values.
• The server does not send security headers or directives or they are
not set to secure values.
• The software is out of date or vulnerable

 

7. Cross-Site Scripting (XSS)7. Cross-Site Scripting (XSS)

There are three forms of XSS, usually targeting users' browsers:
Reflected XSS: The application or API includes unvalidated and
unescaped user input as part of HTML output. A successful attack
can allow the attacker to execute arbitrary HTML and JavaScript in
the victim’s browser. Typically the user will need to interact with
some malicious link that points to an attacker controlled page, such
as malicious watering hole websites, advertisements, or similar.
Stored XSS: The application or API stores unsanitized user input that
is viewed at a later time by another user or an administrator. Stored
XSS is often considered a high or critical risk.
DOM XSS: JavaScript frameworks, single-page applications, and
APIs that dynamically include attacker-controllable data to a page are
vulnerable to DOM XSS. Ideally, the application would not send
attacker-controllable data to unsafe JavaScript APIs.
Typical XSS attacks include session stealing, account takeover,
MFA bypass, DOM node replacement or defacement (such as
trojan login panels), attacks against the user's browser such as
malicious software downloads, key logging, and other client-side
attacks.

8. Insecure deserialization8. Insecure deserialization

Applications and APIs will be vulnerable if they deserialize hostile or
tampered objects supplied by an attacker. This can result in two
primary types of attacks:
• Object and data structure related attacks where the attacker
modifies application logic or achieves arbitrary remote code
execution if there are classes available to the application that can
change behavior during or after deserialization.
• Typical data tampering attacks, such as access-control-related
attacks, where existing data structures are used but the content is
changed.
Serialization may be used in applications for:
• Remote- and inter-process communication (RPC/IPC)
• Wire protocols, web services, message brokers
• Caching/Persistence
• Databases, cache servers, file systems
• HTTP cookies, HTML form parameters, API authentication tokens

By CamCam (clucinvt)
cheatography.com/clucinvt/
camluc.tech

 
Published 30th March, 2018.
Last updated 30th March, 2018.
Page 2 of 3.

 
Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/clucinvt/
http://www.cheatography.com/clucinvt/cheat-sheets/owasp-top-10-vulnerabilities
http://www.cheatography.com/clucinvt/
http://camluc.tech
http://crosswordcheats.com


OWASP Top 10 Vulnerabilities Cheat Sheet
by Cam (clucinvt) via cheatography.com/55263/cs/14762/

9. Using components with known vulnerabilities9. Using components with known vulnerabilities

You are likely vulnerable:
• If you do not know the versions of all components you use (both
client-side and server-side). This includes components you directly
use as well as nested dependencies.
• If software is vulnerable, unsupported, or out of date. This includes
the OS, web/application server, database management system
(DBMS), applications, APIs and all components, runtime enviro‐
nments, and libraries.
• If you do not scan for vulnerabilities regularly and subscribe to
security bulletins related to the components you use.
• If you do not fix or upgrade the underlying platform, frameworks,
and dependencies in a risk-based, timely fashion. This commonly
happens in environments when patching is a monthly or quarterly
task under change control, which leaves organizations open to many
days or months of unnecessary exposure to fixed vulnerabilities.
• If software developers do not test the compatibility of updated,
upgraded, or patched libraries.
• If you do not secure the components' configurations

10. Insufficient logging & monitoring10. Insufficient logging & monitoring

Insufficient logging, detection, monitoring and active response occurs
any time:
• Auditable events, such as logins, failed logins, and high-value
transactions are not logged.
• Warnings and errors generate no, inadequate, or unclear log
messages.
• Logs of applications and APIs are not monitored for suspicious
activity.
• Logs are only stored locally.
• Appropriate alerting thresholds and response escalation processes
are not in place or effective.
• Penetration testing and scans by DAST tools (such as OWASP
ZAP) do not trigger alerts.
• The application is unable to detect, escalate, or alert for active
attacks in real time or near real time.
You are vulnerable to information leakage if you make logging and
alerting events visible to a user or an attacker

 

By CamCam (clucinvt)
cheatography.com/clucinvt/
camluc.tech

 
Published 30th March, 2018.
Last updated 30th March, 2018.
Page 3 of 3.

 
Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/clucinvt/
http://www.cheatography.com/clucinvt/cheat-sheets/owasp-top-10-vulnerabilities
http://www.cheatography.com/clucinvt/
http://camluc.tech
http://crosswordcheats.com

	OWASP Top 10 Vulnerabilities Cheat Sheet - Page 1
	Cheatsheet version
	3. Sensitive data exposure
	1. Injection
	2. Broken authentication
	4. XML External Entities (XEE)

	OWASP Top 10 Vulnerabilities Cheat Sheet - Page 2
	5. Broken access control
	7. Cross-Site Scripting (XSS)
	6. Security misconfiguration
	8. Insecure deserialization

	OWASP Top 10 Vulnerabilities Cheat Sheet - Page 3
	9. Using components with known vulnerabilities
	10. Insufficient logging & monitoring


