Cheatography

Cellular Res and Photosyn Cheat Sheet by CJLEE via cheatography.com/168365/cs/36593/

Cellular Respiration			
Takes place	e in Mi	tochondria	
starch is the major source of fuel	broke	en down into glucose	
energy harvest		ose is broken down in s to harvest energy	
ETC	prote	quence of membrane ins that shuttle electrons n a series of redox ions	
ETC	relea ATP	ses energy used to make	
4 Stages:	- the	olysis - Pyruvate Oxidation citric acid cycle (Krebs e) - Oxidative phosphory-	
	latior	1	
	latior	1	
Glycolysis		- -	
Occurs in the	ne cyto	osol	
Occurs in the Splits gluco	ne cyto ose (60	osol C) into 2 pyruvates (3C)	
Occurs in the	ne cyto ose (60	osol	
Occurs in the Splits gluco	ne cyto ose (60	bsol C) into 2 pyruvates (3C) Energy investment stage	
Occurs in th Splits gluco Two stages Energy investment	ne cyto ose (60	bsol C) into 2 pyruvates (3C) Energy investment stage & Energy payoff stage the cell uses ATP to phosphorylate	
Occurs in th Splits gluco Two stages Energy investment stage Energy pay	ne cyto ose (60 ;	bsol C) into 2 pyruvates (3C) Energy investment stage & Energy payoff stage the cell uses ATP to phosphorylate compounds of glucose energy is produced by substrate level phosph-	
Occurs in the Splits gluco Two stages Energy stage Energy pay stage The net energy yield	ne cyto ose (60 ;	Disol C) into 2 pyruvates (3C) Energy investment stage & Energy payoff stage the cell uses ATP to phosphorylate compounds of glucose energy is produced by substrate level phosph- orylation	

Pyruvate Oxidation and Cotroc Acid Cycle

4 ADP + P to 4 ATP

2 Pyruvate + 2H2O +

2ATP + 2NADH +2H+

EP stage

Net

Pyruvate Oxidation	Turns to Acetyl CoA
Citric Acid Cycle	AKA Krebs cycle

By CJLEE cheatography.com/cjlee/

Pyruvate Oxidation and Cotroc Acid Cycle (cont)

Occurs in the mitochondrial matrix	
turns acetyl CoA into citrate	releases CO2, synthesize ATP, and transfer electrons to NADH and FADH2
Inputs	2 acetyl CoA
Outputs	2ATP 6NADH 4CO2 2FADH2

Oxidative Phosphorylation

Consists of Electron transport chain and Chemiosmosis located in the inner Electron **Transport Chain** membrane of the mitochondria ETC Collection of proteins ETC Does not produce ATP directly, BUT Helps manage the release of energy by creating several small steps for "fall" of electrons The cristae increase the surface area for the reactions to occur final electron oxygen acceptor One major to create a proton (H+) function gradient across the membrane Use the exergonic flow As proteins of electrons from NADH shuttle electrons and FADH2 along the ETC, they also pump H+ into the intermembrane space This gradient will Uses hydrogen ions to power chemiopower cellular work smosis Chemiosmosis ATP synthase ATP synthase the enzyme that makes ATP from ADP + P

Oxidative Phosphorylation (cont)

ATP	Uses energy from the H+
synthase	gradient across the membrane
Chemio- smosis	H+ ions flow down their gradient through ATP synthase
ATP synthase	When H+ binds the rotor spins Activates catalytic sites to
acts like a rotor	turn ADP + P into ATP
Produces	26-28 ATP per glucose
Respiration	without Oxygen

	nalout oxygon
Anaerobic Respir- ation	generates ATP using an ETC in the absence of oxygen
•	in prokaryotic organisms that nments with no oxygen
The final elec nitrates	ctron acceptors: sulfates or
Fermen- tation	generates ATP without an ETC
Extension of glycolysis	Recycles NAD+, Occurs in the cytosol, NO oxygen
Two types	Alcohol fermentation and Lactic acid fermentation
Alcohol Fermen- tation (bacteria, yeast)	pyruvate is converted into ethanol
Lactic Acid Fermen- tation (muscle cells)	When muscles run out of oxygen, they can go through lactic acid fermentation to produce ATP
Lactic Acid Fermen- tation	Breakdown of lactate

Not published yet. Last updated 18th January, 2023. Page 1 of 2.

Sponsored by Readable.com Measure your website readability! https://readable.com

Cheatography

Cellular Res and Photosyn Cheat Sheet by CJLEE via cheatography.com/168365/cs/36593/

Ph	
Photosynt- hesis	the conversion of light energy to chemical energy
Site of Photosynt- hesis	Chloroplast and Stomata
Chloroplas	organelle for the location of photosynthesis
Stomata	pores in leaves that allow CO2 in and O2 out
Stroma	aqueous internal fluid
Thylakoids	form stacks known as grana
Chloro- phyll	green pigment in thylakoid membranes
PS II	Light energy (photon) causes an e- to go from an excited state back to a ground state
PS I	Electrons go down a second transport chain
Calvin Cycle	The calvin cycle is cyclic electron flow
Three phases:	1. Carbon fixation 2. Reduction 3. Regeneration of RuBP

\mathbf{C}

By CJLEE cheatography.com/cjlee/ Not published yet. Last updated 18th January, 2023. Page 2 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com