Cheatography

stats formula sheet Cheat Sheet by cicihex via cheatography.com/197422/cs/41607/

mean

SD

median

IQR

Basic Terms		
parameter	fixed value describing popula- tion; usually unknown	
statistic	value calculated from sample; used to estimate parameter	
descri- ptive stats	- collecting, summarizing, describing data - graphical/numerical	
inferential stats	- drawing conclusions/making predictions about pop based on sample	
**		

data types		
name	type	data
discrete	num	whole number
continuous	num	decimals
nominal	cat	no order
ordinal	cat	has order

sampling

graphical summary

У
Î

percentile	
quartile	
standard deviation	
IQR	
outliers	
symmetric	skewed

measure of spread histograms association

measure of center

numerical summary (cont)

probability

interpretation

properties

conditional probability

discrete RV

binomial RV

cont. RV

cont prob distribution properties

empirical rule

z stuff

normal distribution

sampling distribution - sample mean

. '	CLT
	standard error and bias of \overline{X}
	ostimation of u
	estimation of µ
l	margin of error
(confidence level & z-score
	Confidence Interval - 3 cases
_	1. pop not normal; σ KNOWN \Rightarrow central lin
	theorem
	the approx confidence interval for pop mea
	μis
	$\overline{x} \pm z^*(\sigma/\sqrt{n})$
	z*=zα/2 is upper critical value
	2. pop normal; σ UNknown \Rightarrow t-distribution
	T≡ (X̄-μ)/(S/√n)
	S²=1/n-1∑(Xi-X̄)²
	S=√S²
3	t stuff
(estimator and MOE from CI
	sampling dist sample proportion
	hyp test for one population proportion

CLT

normal pop, known σ	one sample z-
	test
normal pop, UNknown	one sample t-test
σ	

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

By cicihex cheatography.com/cicihex/ Not published yet. Last updated 11th December, 2023. Page 1 of 2.

Cheatography

stats formula sheet Cheat Sheet
by cicihex via cheatography.com/197422/cs/41607/

decision errors			
type 1	-reject a true Ho -false positive		
type 2	-fail to reject false Ho -false negative		
relationship			
α	prob of type 1 error (same as sig level)		
ß	prob of type 2		

hypothesis test steps

- 1. check validity of assumptions
- a. randomness
- b. sample size
- c. population distribution
- 2. set up hypotheses
- identify parameter of interest
- 3. test statistic and its distribution
- 4. compute p-value
- confirm level of sig given in advance
- 5. conclusion interpretation

1. validity

2. hypotheses

3. test statistic		
parameter	μ	р и
Test Statistic	\bar{X} (sample mean)	\hat{p} (sample proportion)
Standardized Form	$rac{ar{x}-\mu_{_0}}{\sigma/\sqrt{n}}$ or $rac{ar{x}-\mu_{_0}}{S/\sqrt{n}}$	$\frac{\hat{p} - p_0}{\left(\frac{p_0(1 - p_0)}{2}\right)}$

By cicihex

cheatography.com/cicihex/

4. p-value

		population	
		Normal	Not normal or unknown (large enough n)
σ	Known	$\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}} \sim N(0,1)$ $\frac{\bar{x}-\mu_0}{S/\sqrt{n}} \sim t(n-1)$	$\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}} \rightarrow N(0,1)$
	unknown	$\frac{\bar{x}-\mu_0}{S/\sqrt{n}} \sim t(n-1)$	$\frac{\bar{X} - \mu_0}{S/\sqrt{n}} \rightarrow N(0, 1)$
When the parameter is the population proportion p: $H_0: p = p_0$ $\frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} \rightarrow N(0,1)$, when $np \ge 10$ and $n(1 - p) \ge 10$.			

5. conclusion

hypothesis test

or significance testing

test an assumption regarding pop.

parameter

method used depends on kind of data and reason

asses plausibility of hypothesis using sample data

hypothesis testing terms		
hypothesis	a claim or statement about a characteristic of a population of interest	
null hypothesis	statement about the value of a population parameter, such as the population mean (μ) or the population proportion (p)	
alt hypothesis	claim to be tested, the opposite of the null hypothesis	

hypothesis testing terms (cont)

nypouloo	ie tooling torrite (bornt)
test	value computed from the sample
statistic	data that is used in making a
	decision about the rejection of
	the null hypothesis; converts the
	sample mean (\bar{x}) or sample
	proportion (p̂) to a Z- or t-score
	under the assumption that the
	null hypothesis is true;
p-value	area under the curve to the left or
	right of test statistic; compared to
	level of significance (α)
critical value	
significance level	
statistical significance	
practical significance	
effect	degree of a relationship between
size	two given variables
standardized effect size	
one sided	
two	tests whether the population
sided	parameter is equal to, versus not
	equal to, some specific value

Not published yet. Last updated 11th December, 2023. Page 2 of 2.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com