Cheatography

calculus exam 2 Cheat Sheet by chloeschmidt via cheatography.com/165721/cs/34693/

Basic Properties	s/Formulas/Rules	Com
(fg)' = f' g + f g'		d/dx
$(f/g)' = (f' g - f g') / (g^2)$		
d/dx(f(g(x))) = f'(g(x))g'(x)		
$d/dx(e^{g(x)}) = g'(x)e^{g(x)}$		
d/dx(lng(x)) = g'(x)/g(x)		
$d/dx(x^n) = nx^{n-1}$		
d/dx(c) = 0, c is any constant		
$b^{x} = e^{x \ln b}$		
Common Derivatives		
Polynomials	d/dx(c) = 0	
	d/dx(x) = 1	
	d/dx(cx) = c	
	$d/dx(x^n) = nx^{n-1}$	
	d/dx(cx ⁿ) = ncx ⁿ⁻¹	
Trig Functions	d/dx(sinx) = cosx	
	d/dx(cosx) = - sinx	
	d/dx(tanx) = sec ² x	
	d/dx(secx) = secxtanx	
	d/dx(cscx) = - cscxcotx	
	d/dx(cotx) = - csc ² x	
Inverse Trig Functions	$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$	
	$d/dx(\cos^{-1}x) = -$	

Common Derivatives (cont)

 $/dx(cot^{-1}x) = -1/1+x^{2}$

By chloeschmidt

 $1/\sqrt{1-x^2}$ d/dx(tan⁻¹x) = 1/1+x²

 $d/dx(sec^{-1}x) = 1/|x|\sqrt{x^2-1}$ $d/dx(csc^{-1}x) = -1/|x|\sqrt{x^2-1}$

Not published yet. Last updated 15th October, 2022. Page 1 of 1. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

cheatography.com/chloeschmidt/