\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{chihauhauu} \pdfinfo{ /Title (pha-053-sas-1-basic-principles-of-pharmacology.pdf) /Creator (Cheatography) /Author (chihauhauu) /Subject (PHA 053 SAS \#1 Basic Principles of Pharmacology Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A9D0F5} \definecolor{LightBackground}{HTML}{F4F9FD} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{PHA 053 SAS \#1 Basic Principles of Pharmacology Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{chihauhauu} via \textcolor{DarkBackground}{\uline{cheatography.com/197961/cs/41830/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}chihauhauu \\ \uline{cheatography.com/chihauhauu} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 25th December, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{PHARMACOLOGY}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{is the {\bf{study of substances}} that interact with living systems through chemical processes, especially by binding to regulatory molecules and activating or inhibiting normal body processes.} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{TOXICOLOGY}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{A branch of pharmacology which deals with the {\bf{undesirable effects}} of chemicals on living systems, from individual cells to complex ecosystems.% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{MEDICAL PHARMACOLOGY}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Is defined as the science of substances used to {\bf{prevent, diagnose, and treat disease.}}% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Reasons for different Routes of Administration:}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{• For convenience – oral drugs \newline % Row Count 1 (+ 1) • To maximize concentration at the site of action and minimize it elsewhere (topical) \newline % Row Count 3 (+ 2) • To prolong the duration of drug absorption (transdermal) \newline % Row Count 5 (+ 2) • To avoid the first pass effect% Row Count 6 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Weak Acid and Weak Base}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Weak acid}} - is a neutral molecule that can reversibly dissociate into an anion and a proton} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Weak base}} - a neutral molecule that can form a cation by combining with a proton.} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Application of the principle:}} \newline - {\bf{Acidic drugs}} are best absorbed from acidic environments \newline - {\bf{Basic drugs}} are best absorbed from basic environments \newline \newline Thus, {\bf{weak acids}} are usually excreted faster in alkaline urine; {\bf{weak bases}} are usually excreted faster in acidic urine.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Table 1 - 4}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/chihauhauu_1703478069_IMG_0845.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{{\bf{ PHARMACOKINETICS}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The goal of therapeutics is to achieve a desired beneficial effect with {\bf{minimal adverse effects.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{the actions of the {\bf{body on the drug.}}} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{determine how rapidly and for how long the drug will appear at the target organ.} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Pharmacokinetics}} deals with the dose- concentration part.} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{this govern the {\bf{Absorption, Distribution, and Elimination}} of drugs} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{PHARMACOKINETIC PRINCIPLES}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{PRODRUG}} - an inactive precursor chemical that is readily absorbed and distributed is administered and then converted to the active drug by biologic processes – inside the body.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{FREE DRUG}} - exerts a biologic effect} \tn % Row Count 5 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{BOUND DRUG}} - stays in the vascular space and is not metabolized or eliminated.} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{PERMEATION}} - is the {\bf{movement of drug molecules}} into and within the biologic environment.} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The NATURE of DRUGS:}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Drug}} - any substance that {\bf{brings about a change}} in biologic function through its chemical actions.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{the drug molecule interacts as an {\bf{agonist}} (activator) or {\bf{antagonist}} (inhibitor) with a specific target molecule that plays a regulatory role in the biologic system.} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Drugs maybe synthesized within the body (eg. {\bf{Hormones}}) or maybe chemicals not synthesized in the body, ie. {\bf{Xenobiotics}} (xenos – "stranger")} \tn % Row Count 11 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Poisons}} - are drugs that have almost exclusively harmful effects. ({\bf{Paracelsus}} – famously stated "the dose makes the poison" -{}-{}- any substance can be harmful if taken in the wrong dosage)} \tn % Row Count 15 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Toxins}} - are defined as {\bf{poisons of biologic origin}}, synthesized by plants or animals} \tn % Row Count 17 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.84149 cm} x{3.13551 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{ROLE OF BIOTRANSFORMATION IN DRUG DISPOSITION}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Phase 1 Reactions}} & usually convert the parent drug to a more polar metabolite by introducing or unmasking a functional group (–OH, –NH2, –SH). \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} & • If phase I metabolites are sufficiently polar, they may be readily excreted. \tn % Row Count 10 (+ 4) % Row 2 \SetRowColor{LightBackground} & - involves {\bf{oxidation, reduction, hydrolysis}} \tn % Row Count 12 (+ 2) % Row 3 \SetRowColor{white} & - alter chemical reactivity and increase aqueous solubility \tn % Row Count 15 (+ 3) % Row 4 \SetRowColor{LightBackground} {\bf{ PHASE II reactions}} & - involves {\bf{conjugation}} \tn % Row Count 17 (+ 2) % Row 5 \SetRowColor{white} & this reaction further increases the solubility, promoting elimination \tn % Row Count 20 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Plasma Protein Binding:}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{if a drug is displaced from plasma proteins it would increase the unbound drug concentration and increase the drug effect and, perhaps, produce toxicity.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{When the amount of unbound drug in plasma increases}}, the rate of elimination will increase and after four half-lives the unbound concentration will return to its previous steady state value.} \tn % Row Count 8 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{PHARMACODYNAMIC PRINCIPLES}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{A. Types of Drug-Receptor Interactions} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{AGONIST}} – drugs bind to and activate the receptor in some fashion, which directly or indirectly brings about the effect.} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ANTAGONIST}} – by binding to a receptor, prevent binding by other molecules.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Partial agonist}} – bind to the same receptors and activate them in the same way but do not evoke as great a response, no matter how high the concentration.} \tn % Row Count 10 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Inverse agonist}} –is a ligand that binds to the same receptor-binding site as an agonist and not only antagonizes the effects of an agonist but exerts the opposite effect by suppressing spontaneous receptor signaling (when present).} \tn % Row Count 15 (+ 5) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{- Most drugs must bind to a receptor to bring about an effect.} \tn % Row Count 17 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The Physical Nature of Drugs}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{To interact chemically with its receptor, drug molecule must have the:} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Appropriate Size}}} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Electrical Charge}}} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Shape}}} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Atomic composition}}} \tn % Row Count 6 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{FURTHERMORE... \newline A {\bf{useful drug}} must have the necessary properties to be transported from its site of administration to its site of action. \newline \newline A {\bf{practical drug}} should be inactivated or excreted from the body at a reasonable rate so that its actions will be of appropriate duration.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{DRUG - BODY INTERACTIONS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{PHARMACODYNAMICS}} – the actions of the {\bf{drug on the body.}} These determine the group in which the drug is classified} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{PHARMACOKINETICS}} – the actions of the {\bf{body on the drug.}} Govern the {\bf{Absorption, Distribution, and Elimination}} of drugs} \tn % Row Count 6 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{{\bf{ 2 BASIC PHARMACOKINETIC PARAMETERS:}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ VOLUME of DISTRIBUTION (V)}} - the measure of the apparent space in the body available to contain the drug. Relates the amount of drug in the body to the concentration of drug (C) in blood or plasma.} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ CLEARANCE}} - the measure of the ability of the body to eliminate the drug. The factor that predicts the rate of elimination in relation to the drug concentration.} \tn % Row Count 9 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{- The two major sites of drug elimination are the {\bf{kidneys and the liver.}} \newline - Clearance of unchanged drug in the urine represents renal clearance. \newline - Within the liver, drug elimination occurs via {\bf{biotransformation}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Bioavailability}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/chihauhauu_1703479960_IMG_0860.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The fraction of unchanged drug reaching the systemic circulation following administration by any route.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.44333 cm} x{3.53367 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Pharmacokinetic Processes}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Liberation}} & Applies to drugs given orally \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & – Release of drug from pill, tablet, capsule \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} & – Dissolving of active drug in GI fluids \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} {\bf{Absorption}} & Movement from administration site into circulation \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{Distribution}} & The transport of a drug in the body by the bloodstream to its site of action. \tn % Row Count 11 (+ 3) % Row 5 \SetRowColor{white} {\bf{Metabolism}} & The biologic transformation of a drug into an inactive metabolite, a more soluble compound, or a more potent metabolite. \tn % Row Count 16 (+ 5) % Row 6 \SetRowColor{LightBackground} {\bf{Excretion}} & - is the process by which a drug or metabolite is eliminated from the body. \tn % Row Count 19 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Rate of Absorption}} \newline {\bf{FIRST – ORDER KINETICS}} \newline - a constant fraction of drug is absorbed. \newline {\bf{ZERO – ORDER KINETICS}} \newline - a constant amount of drug is absorbed. \newline \newline The {\bf{blood brain barrier}} consists of cell tightly packed around the capillaries of the CNS. \newline \newline {\bf{KIDNEY}} = most important organ for excretion of drugs. \newline = primary site \newline \newline {\bf{WHERE DO DRUG BIOTRANSFORMATIONS OCCUR?}} \newline •{\bf{ Liver}} is the principal organ of drug metabolism.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The 3 Major Types of Chemical forces or Bonds}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{COVALENT bonds}} – are very strong and in many cases not reversible under biologic conditions.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ELECTROSTATIC bonds}} – more common but are weaker than covalent bonds.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{HYDROPHOBIC bonds}} – are usually quite weak and are important in the interactions of highly lipid soluble drugs.} \tn % Row Count 7 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Factors Influencing Absorption and Bioavailability}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Aqueous diffusion}} of drug molecules is usually driven by the concentration gradient of the permeating drug, a downhill movement described by {\bf{Frick's law.}}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Lipid diffusion}} - is the most important limiting factor for drug permeation because of the large number of lipid barriers that separate the compartments of the body.} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Special Carriers}} – Special carrier molecules exist for certain substances that are important for cell function and {\bf{too large or too insoluble}} in lipid to diffuse passively through membranes.} \tn % Row Count 12 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{{\bf{ Endocytosis and Exocytosis:}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ENDOCYTOSIS}} - is the process by which the substance is bound at a cell-surface receptor, engulfed by the cell membrane, and carried into the cell by pinching off of the newly formed vesicle inside the membrane.} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{EXOCYTOSIS}} - the reverse process. Is responsible for the secretion of many substances from cells.} \tn % Row Count 8 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{For a drug to cross the lipid membrane easily / readily must have the ff. factors: \newline – Lipid soluble \newline – Uncharged \newline – Non polar \newline – Small in size \newline – Non ionized} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.74195 cm} x{3.23505 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{{\bf{ THE TIME COURSE of DRUG EFFECT}}}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Immediate Effects}} & drug effects are directly related to plasma concentrations. \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Delayed Effects}} & Changes in drug effects are often delayed in relation to changes in plasma concentration. \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} {\bf{Cumulative Effects}} & It is the accumulation of aminoglycoside in the renal cortex that is thought to cause renal damage. \tn % Row Count 11 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{{\bf{ Biological Half-life (t 1/2)}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{is the time required to change the amount of drug in the body by one-half during elimination.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{the most useful in designing drug dosage regimens.} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{it indicates the time required to attain 50\% of steady state—or to decay 50\% from steady-state conditions} \tn % Row Count 6 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Drug Accumulation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{With repeating drug doses, the drug will accumulate in the body until dosing ceases.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Accumulation: inversely proportional to the fraction of the dose lost in each dosing interval.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The {\bf{accumulation factor}} predicts the ratio of the steady-state concentration to that seen at the same time following the first dose.} \tn % Row Count 7 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Hepatic 'First-Pass' Metabolism}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{• Affects orally administered drugs \newline % Row Count 1 (+ 1) • Drug absorbed into portal circulation, must pass through liver to reach systemic circulation \newline % Row Count 3 (+ 2) • May reduce availability of drug% Row Count 4 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Designing a Rational Dosage Regimen}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{MAINTENANCE DOSE}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{– Drugs are administered to maintain a steady state concentration in the body. (just enough drug is given in each dose to replace the drug eliminated since the preceding dose)} \tn % Row Count 5 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Clearance}}} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{is the most important pharmacokinetic term to be considered in defining a rational steady- state drug dosage regimen. – At steady state, the dosing rate ("rate in") must equal the rate of elimination ("rate out").} \tn % Row Count 11 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ LOADING DOSE}}} \tn % Row Count 12 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{– Promptly raises the concentration of drug in plasma to the target concentration.} \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.74195 cm} x{3.23505 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Enzyme Induction \& Inhibition}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{ ENZYME INDUCTION}} & – Enhance the rate of drug`s synthesis or reducing its rate of degradation. \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} & – Induction results in an acceleration of substrate metabolism and usually in a decrease in the pharmacologic action of the inducer and also of coadministered drugs. \tn % Row Count 10 (+ 7) % Row 2 \SetRowColor{LightBackground} {\bf{ ENZYME INHIBITION}} & – Certain drug substrates inhibit cytochrome P450 enzyme activity. \tn % Row Count 13 (+ 3) % Row 3 \SetRowColor{white} & – Reduce the metabolism of the endogenous substrates or other coadministered drugs. \tn % Row Count 17 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}