\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{ChemIsForSheeit} \pdfinfo{ /Title (bair-stuff.pdf) /Creator (Cheatography) /Author (ChemIsForSheeit) /Subject (Bair Stuff Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{3940A3} \definecolor{LightBackground}{HTML}{F2F3F9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Bair Stuff Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{ChemIsForSheeit} via \textcolor{DarkBackground}{\uline{cheatography.com/141751/cs/30420/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}ChemIsForSheeit \\ \uline{cheatography.com/chemisforsheeit} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 24th January, 2022.\\ Updated 31st May, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{STP}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{STP=1atm,0degrees celsius \newline % Row Count 1 (+ 1) Standard Temperature and Pressure% Row Count 2 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{1 mol}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{1mol=6.02x10\textasciicircum{}23particles X=molar mass(g) X \newline % Row Count 1 (+ 1) particles \{ \newline % Row Count 2 (+ 1) atoms(single elements), \newline % Row Count 3 (+ 1) molecules(two or more non metals), \newline % Row Count 4 (+ 1) formulas units(two or more non metals)(f.u) \newline % Row Count 5 (+ 1) ions(minerals, electrolytes,charged particles \newline % Row Count 6 (+ 1) \}% Row Count 7 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Conversion: inch to mm}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{1in=2.54cm} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{100cm=1m} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{1m=1,000mm} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Conversion: atm to mmHg}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{\seqsplit{1atm=kPa=760torr=10.3mH2O=14.7psi=760mmHg}% Row Count 1 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Things to know about mols}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{1mol=6.02x10\textasciicircum{}23\textasciicircum{}particles} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{1mol=22.4L (only for gases)} \tn % Row Count 2 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Constants for Energy}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Constants \newline % Row Count 1 (+ 1) h= 6.63x10\textasciicircum{}-34\textasciicircum{}{\bf{J*s}} \newline % Row Count 2 (+ 1) c=3x10\textasciicircum{}8\textasciicircum{} {\bf{m/s}} \newline % Row Count 3 (+ 1) h is Planck's Constant \newline % Row Count 4 (+ 1) c is speed of light% Row Count 5 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{electron configuration}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{1s \newline % Row Count 1 (+ 1) 2s 2p \newline % Row Count 2 (+ 1) 3s 3p 3d \newline % Row Count 3 (+ 1) 4s 4p 4d 4f \newline % Row Count 4 (+ 1) 5s 5p 5d 5f \newline % Row Count 5 (+ 1) 6s 6p 6d 6f \newline % Row Count 6 (+ 1) 7s 7p 7d 7f \newline % Row Count 7 (+ 1) s=2 p=6 d=10 f=14% Row Count 8 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Rules for Sig Figs}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{To determine the number of significant figures in a number use the following 3 rules: \newline % Row Count 2 (+ 2) 1.Non-zero digits are always significant \newline % Row Count 3 (+ 1) 2.Any zeros between two significant digits are significant \newline % Row Count 5 (+ 2) 3.A final zero or trailing zeros in the decimal portion ONLY are significant \newline % Row Count 7 (+ 2) Example: .500 or .632000 the zeros are significant \newline % Row Count 9 (+ 2) .006 or .000968 the zeros are NOT significant \newline % Row Count 11 (+ 2) For addition and subtraction use the following rules: \newline % Row Count 13 (+ 2) 1.Count the number of significant figures in the decimal portion ONLY of each number in the problem \newline % Row Count 15 (+ 2) 2.Add or subtract in the normal fashion \newline % Row Count 16 (+ 1) 3.Your final answer may have no more significant figures to the right of the decimal than the LEAST number of significant figures in any number in the problem. \newline % Row Count 20 (+ 4) For multiplication and division use the following rule: \newline % Row Count 22 (+ 2) 1.The LEAST number of significant figures in any number of the problem determines the number of significant figures in the answer. (You are now looking at the entire number, not just the decimal portion) \newline % Row Count 27 (+ 5) {\emph{This means you have to be able to recognize significant figures in order to use this rule}} \newline % Row Count 29 (+ 2) Example: 5.26 has 3 significant figures \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Rules for Sig Figs (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ 6.1 has 2 significant figures% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{No think math method? for conversion}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{\#unit\textasciicircum{}1\textasciicircum{} x \#unit(converting to) / \#unit\textasciicircum{}1\textasciicircum{} \newline % Row Count 1 (+ 1) \#=number \newline % Row Count 2 (+ 1) cancel like units \newline % Row Count 3 (+ 1) then multiple and divide then you get your answer {\bf{with new units}}% Row Count 5 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Abbreviations}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Atmosphere-atm \newline % Row Count 1 (+ 1) Bar-Bar \newline % Row Count 2 (+ 1) millimeter of mercury-mmHg \newline % Row Count 3 (+ 1) Pascal-pa \newline % Row Count 4 (+ 1) Pounds per square inch-psi \newline % Row Count 5 (+ 1) Torr-torr% Row Count 6 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Celsius to Kelvin}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{K=°C+273.15% Row Count 1 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{The 7 Diatomic Elements}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Hydrogen (H2) \newline % Row Count 1 (+ 1) Nitrogen (N2) \newline % Row Count 2 (+ 1) Oxygen (O2) \newline % Row Count 3 (+ 1) Fluorine (F2) \newline % Row Count 4 (+ 1) Chlorine (Cl2) \newline % Row Count 5 (+ 1) Iodine (I2) \newline % Row Count 6 (+ 1) Bromine (Br2)% Row Count 7 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Useful things to know about gases}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{1. Gas particles are much farther apart from each other than liquid and solid particles \newline % Row Count 2 (+ 2) 2. Gases are fluids, fluids are any substance that can flow \newline % Row Count 4 (+ 2) 3. Gases have low density \newline % Row Count 5 (+ 1) 4. Gases are highly compressible \newline % Row Count 6 (+ 1) 5. Gases completely fill a container \newline % Row Count 7 (+ 1) 6. Kinetic molecular theory \newline % Row Count 8 (+ 1) *model used to predict gas behavior \newline % Row Count 9 (+ 1) *constant random motion, increasing temp, increases motion \newline % Row Count 11 (+ 2) 7. Intermolecular forces(attractive forces) are very weak or nonexistent between gas particles% Row Count 13 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{number prefixes}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{1-mono \newline % Row Count 1 (+ 1) 2-di \newline % Row Count 2 (+ 1) 3-tri \newline % Row Count 3 (+ 1) 4-tetra \newline % Row Count 4 (+ 1) 5-penta \newline % Row Count 5 (+ 1) 6-hexa \newline % Row Count 6 (+ 1) 7-hepta \newline % Row Count 7 (+ 1) 8-octa \newline % Row Count 8 (+ 1) 9-nona \newline % Row Count 9 (+ 1) 10-deca% Row Count 10 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{mole of a photon}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{(6.02x10\textasciicircum{}23\textasciicircum{})(6.63x10\textasciicircum{}-34\textasciicircum{})(V) \newline % Row Count 1 (+ 1) Multiply this exactly how this is once you get your {\bf{V}} and you will get your mole of a photon for the problem.% Row Count 4 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Energy Conversions}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{1m=1x10\textasciicircum{}9\textasciicircum{}nm \newline % Row Count 1 (+ 1) 1kHz=1x10\textasciicircum{}3\textasciicircum{}Hz \newline % Row Count 2 (+ 1) 1mHz=1x10\textasciicircum{}6\textasciicircum{}Hz% Row Count 3 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Energy Formulas}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{C=VA {\bf{(A is lambda)}} \newline % Row Count 1 (+ 1) E=hV \newline % Row Count 2 (+ 1) E is energy \newline % Row Count 3 (+ 1) V is frequency \newline % Row Count 4 (+ 1) A is lambda% Row Count 5 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Combined gas Law}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{P\textasciicircum{}1\textasciicircum{}V\textasciicircum{}1\textasciicircum{}/T\textasciicircum{}1\textasciicircum{}=P\textasciicircum{}2\textasciicircum{}V\textasciicircum{}2\textasciicircum{}/T\textasciicircum{}2\textasciicircum{} \newline % Row Count 1 (+ 1) The Combined Gas Law is useful when: {\bf{Given two pressures, volumes, or temperatures and asked for an unknown pressure, volume, or temp}}. Whenever it gives you conditions for one gas, and asks for conditions of another gas, you're most likely going to use this Law.% Row Count 7 (+ 6) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Charle's law}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{v\textasciicircum{}1\textasciicircum{}/t\textasciicircum{}1\textasciicircum{} = v\textasciicircum{}2\textasciicircum{}/t\textasciicircum{}2\textasciicircum{} \newline % Row Count 1 (+ 1) Since pressure is kept constant, the only variable that is manipulated is temperature. This means that we can use Charles's law in {\bf{order to compare volume and temperature}}. Since volume and temperature are on opposite sides of the ideal gas law, they are directly proportional to one another.% Row Count 7 (+ 6) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Ideal gas Law}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{PV/{\emph{n}}T={\emph{n}}RT/{\emph{n}}T \newline % Row Count 1 (+ 1) P=atm \newline % Row Count 2 (+ 1) V=L \newline % Row Count 3 (+ 1) {\emph{n}}=\# of mols \newline % Row Count 4 (+ 1) T=Kelvin \newline % Row Count 5 (+ 1) R= 0.0821 atm x L / mol x K -{}-{}-Always divide the numbers underneath% Row Count 7 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Boyles law}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{P\textasciicircum{}1\textasciicircum{}V\textasciicircum{}1\textasciicircum{} = P\textasciicircum{}2\textasciicircum{}V\textasciicircum{}2\textasciicircum{} \newline % Row Count 1 (+ 1) Key Points: \newline % Row Count 2 (+ 1) \textasciitilde{}According to Boyle's Law, an inverse relationship exists between pressure and volume. \newline % Row Count 4 (+ 2) \textasciitilde{}Boyle's Law holds true only if the number of molecules (n) and the temperature (T) are both constant. \newline % Row Count 7 (+ 3) \textasciitilde{}Boyle's Law is used to predict the result of introducing a change in volume and pressure only, and only to the initial state of a fixed quantity of gas. \newline % Row Count 11 (+ 4) \textasciitilde{}The relationship for Boyle's Law can be expressed as follows: P1V1 = P2V2, where P1 and V1 are the initial pressure and volume values, and P2 and V2 are the values of the pressure and volume of the gas after change.% Row Count 16 (+ 5) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Ideal gas Law}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{PV/{\emph{n}}T={\emph{n}}RT/{\emph{n}}T \newline % Row Count 1 (+ 1) P=atm \newline % Row Count 2 (+ 1) V=L \newline % Row Count 3 (+ 1) {\emph{n}}=\# of mols \newline % Row Count 4 (+ 1) T=Kelvin \newline % Row Count 5 (+ 1) R= 0.0821 atm x L / mol x K -{}-{}-Always divide the numbers underneath% Row Count 7 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Gay-lusacs law}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{p\textasciicircum{}1\textasciicircum{}/t\textasciicircum{}1\textasciicircum{} = p\textasciicircum{}2\textasciicircum{}/t\textasciicircum{}2\textasciicircum{} \newline % Row Count 1 (+ 1) Gay-Lussac's law is a form of the ideal gas law in which gas volume is kept constant. \newline % Row Count 3 (+ 2) When volume is held constant, pressure of a gas is directly proportional to its temperature. \newline % Row Count 5 (+ 2) The usual equations for Gay-Lussac's law are P/T = constant or Pi/Ti = Pf/Tf.% Row Count 7 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}