Cheatography

Bair Stuff Cheat Sheet

by ChemIsForSheeit via cheatography.com/141751/cs/30420/

STP
STP=1atm,0degrees celsius
Standard Temperature and
Pressure
1 mol
1mol=6.02x10^23particles
X=molar mass(g)X
particles \{
atoms(single elements),
molecules(two or more non
metals),
formulas units(two or more non
metals)(f.u)
ions(minerals, electrolytes,ch-
arged particles
\}

Conversion: inch to mm

$1 \mathrm{in}=2.54 \mathrm{~cm}$
$100 \mathrm{~cm}=1 \mathrm{~m}$
$1 \mathrm{~m}=1,000 \mathrm{~mm}$

Conversion: atm to mmHg

1atm $=\mathrm{kPa}=760$ torr $=10.3 \mathrm{mH} 2-$
$\mathrm{O}=14.7 \mathrm{psi}=760 \mathrm{mmHg}$
Things to know about mols
$1 \mathrm{~mol}=6.02 \times 10^{23}$ particles
$1 \mathrm{~mol}=22.4 \mathrm{~L}$ (only for gases)

Constants for Energy

Constants

$h=6.63 \times 10^{-34} \mathrm{~J} * \mathrm{~s}$
$\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
h is Planck's Constant
c is speed of light

Rules for Sig Figs

To determine the number of significant figures in a number use the following 3 rules: 1.Non-zero digits are always significant
2.Any zeros between two significant digits are significant
3.A final zero or trailing zeros in the decimal portion ONLY are significant
Example: . 500 or .632000 the
zeros are significant
.006 or .000968 the zeros are
NOT significant
For addition and subtraction use the following rules:
1.Count the number of significant figures in the decimal portion ONLY of each number in the problem
2.Add or subtract in the normal fashion

Rules for Sig Figs (cont)
3.Your final answer may have no

For multiplication and division use the following rule:

1. The LEAST number of significant figures in any number of the problem determines the number of significant figures in the answer. (You are now looking at the entire number, not just the decimal portion) This means you have to be able to recognize significant figures in order to use this rule Example: 5.26 has 3 significant figures
6.1 has 2 significant figures

No think math method? for conversion

\#unit ${ }^{1}$ x \#unit(converting to) /
\#unit ${ }^{1}$
\#=number
cancel like units
then multiple and divide then
you get your answer with new
units

Abbreviations
Atmosphere-atm
Bar-Bar
millimeter of mercury-mmHg
Pascal-pa
Pounds per square inch-psi
Torr-torr

Celsius to Kelvin

$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$

The 7 Diatomic Elements

Hydrogen (H2)
Nitrogen (N2)
Oxygen (O2)
Fluorine (F2)
Chlorine (Cl2)
lodine (I2)
Bromine (Br2)

Useful things to know about
 gases

1. Gas particles are much farther apart from each other than liquid and solid particles 2. Gases are fluids, fluids are any substance that can flow
2. Gases have low density
3. Gases are highly compre-
ssible
4. Gases completely fill a
container
5. Kinetic molecular theory
*model used to predict gas behavior

By ChemlsForSheeit
cheatography.com/chemisforsheeit/

Published 24th January, 2022.
Last updated 31st May, 2022.
Page 1 of 2.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish
Yours!
https://apollopad.com

Cheatography

Bair Stuff Cheat Sheet

by ChemIsForSheeit via cheatography.com/141751/cs/30420/

Useful things to know about gases (cont)
*constant random motion, increasing temp, increases motion
7. Intermolecular forces(attractive forces) are very weak or nonexistent between gas particles

number prefixes

1-mono

2-di
3-tri
4-tetra
5-penta
6-hexa
7-hepta
8-octa
9-nona
10-deca

mole of a photon

$\left(6.02 \times 10^{23}\right)\left(6.63 \times 10^{-34}\right)(\mathrm{V})$
Multiply this exactly how this is once you get your V and you will get your mole of a photon for the problem.

Energy Formulas
$\mathrm{C}=\mathrm{VA}$ (A is lambda)
$\mathrm{E}=\mathrm{hV}$
E is energy
V is frequency
A is lambda

Combined gas Law
$\mathrm{P}^{1} \mathrm{~V}^{1} / \mathrm{T}^{1}=\mathrm{P}^{2} \mathrm{~V}^{2} / \mathrm{T}^{2}$
The Combined Gas Law is
useful when: Given two
pressures, volumes, or temper-
atures and asked for an
unknown pressure, volume, or
temp. Whenever it gives you
conditions for one gas, and asks
for conditions of another gas,
you're most likely going to use
this Law.

Charle's law

$v^{1} / t^{1}=v^{2} / t^{2}$
Since pressure is kept constant, the only variable that is manipulated is temperature. This means that we can use Charles's law in order to compare volume and temper-
ature. Since volume and temperature are on opposite sides of the ideal gas law, they are directly proportional to one another.

Ideal gas Law
 $\mathrm{PV} / n \mathrm{~T}=n \mathrm{RT} / n \mathrm{~T}$
 $P=a t m$
 $\mathrm{V}=\mathrm{L}$
 $n=\#$ of mols
 T=Kelvin

$R=0.0821$ atm $\times \mathrm{L} / \mathrm{mol} \times \mathrm{K}$---
Always divide the numbers
underneath

Boyles law
$\mathrm{P}^{1} \mathrm{~V}^{1}=\mathrm{P}^{2} \mathrm{~V}^{2}$
Key Points:
\sim According to Boyle's Law, an
inverse relationship exists
between pressure and volume.
\sim Boyle's Law holds true only if
the number of molecules (n) and
the temperature (T) are both
constant.
\sim Boyle's Law is used to predict
the result of introducing a
change in volume and pressure
only, and only to the initial state
of a fixed quantity of gas.
\sim The relationship for Boyle's
Law can be expressed as
follows: $\mathrm{P} 1 \mathrm{~V} 1=\mathrm{P} 2 \mathrm{~V} 2$, where P 1
and V 1 are the initial pressure
and volume values, and P 2 and
V 2 are the values of the
pressure and volume of the gas
after change.
Ideal gas Law
$\mathrm{PV} / n T=n R \mathrm{~T} / n T$
$\mathrm{P}=$ =atm
$\mathrm{V}=\mathrm{L}$
$n=\#$ of mols
$\mathrm{T}=$ Kelvin
$\mathrm{R}=0.0821$ atm $\times \mathrm{L} /$ mol x K ---
Always divide the numbers
underneath

Gay-lusacs law
$p^{1 / t} t^{1}=p^{2} / t^{2}$
Gay-Lussac's law is a form of the ideal gas law in which gas volume is kept constant.
When volume is held constant, pressure of a gas is directly proportional to its temperature. The usual equations for Gay-Lussac's law are P/T = constant or $\mathrm{Pi} / \mathrm{Ti}=\mathrm{Pf} / \mathrm{Tf}$.

cheatography.com/chemisforsheeit/

Published 24th January, 2022.
Last updated 31st May, 2022.
Page 2 of 2.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish
Yours!
https://apollopad.com

