
Refcard #065

ServiceMix 4.2
The Apache Open Source ESB

by Jos Dirksen

Get the lowdown and the know-how on what's new with this open-source ESB.

Free PDF

 DOWNLOAD SAVE

Refcardz: ServiceMix 4.2 SECTIONS

MENU

Sign In / Join

/
/users/121174/jd44165.html
/asset/download/190

SECTION 1

About Servicemix 4.0

SECTION 2

Servicemix 4.0 Architecture

In the open source community there are many different solutions for each problem.
When you look for an open source ESB, however, you don't have that many options.
Even though there are many open source ESB projects, not all of them are mature
enough to be used to solve enterprise mission critical integration problems.
ServiceMix is one of the open source projects that is mature enough to be used in
these scenarios. ServiceMix, an Apache project, has been around for a couple of
years now. It provides all the features you expect from an ESB such as routing,
transformation, etc. The previous version was built based on JBI (JSR-208), but in
its latest iteration, which we're discussing in this Refcard, ServiceMix has moved to
an OSGi based architecture, which we'll discuss later on.

This DZone Refcard will provide an overview of the core elements of ServiceMix 4.0
and will show you how to use ServiceMix 4 by providing example configurations.

Before we show how to configure ServiceMix 4.0 for use, let us first look at the
architecture of ServiceMix 4.0. This figure shows the following components:

ServiceMix Kernel: In this figure you can see that the
basis of ServiceMix 4 is the ServiceMix Kernel. This kernel, which is based on the
Apache Felix Karaf project (an OSGi based runtime), handles the core features
ServiceMix provides, such as hot-deployment, provisioning of libraries or
applications, remote access using ssh, JMX management and more.

ServiceMix NMR: This component, a normalized message router, handles all the
routing of messages within ServiceMix and is used by all the other components.

>ActiveMQ: ActiveMQ, another Apache project, is the message broker which is
used to exchange messages between components. Besides this ActiveMQ can also
be used to create a fully distributed ESB.

Web: ServiceMix 4 also provides a web component. You can use this to start
ServiceMix 4 embedded in a web application. An example of this is provided in the
ServiceMix distribution.

JBI compatibility layer: The previous version of ServiceMix was based on JBI 1.0.
For JBI a lot of components (from ServiceMix, but also from other parties), are
available. This layer provides compatibility with the JBI specification, so that all the
components from the previous version of ServiceMix can run on ServiceMix 4. Be
sure though to use the 2009.01 version of these components.

Camel NMR: ServiceMix 4 provides a couple of different ways you can configure

SECTION 3

Camel NMR: ServiceMix 4 provides a couple of different ways you can configure
routing. You can use the endpoints provided by the ServiceMix NMR, but you can
also use more advanced routing engines. One of those is the Camel NMR. This
component allows you to run Camel based routes on ServiceMix.

CXF NMR: Besides an NMR based on Camel, ServiceMix also provides an NMR
based on CXF. You can use this NMR to expose and route to Java POJOs
annotated with JAX-WS annotations.

OSGi runtime
ServiceMix runs on an OSGi based kernel, but what is OSGi? In short an OSGi
container provides a service based in-VM platform on which you can deploy
services and components dynamically. OSGi provides strict classloasing seperation
and forces you to think about the dependencies your components have. Besides that
OSGi also defines a simple lifecycle model for your services and components. This
results in an environment where you can easily add and remove components and
services at runtime and allows the creation of modular applications. An added
advantage of using an OSGi container is that you can use many components out of
the box: remote administration, a web container, configuration and preferences
services, etc.

Before we move on to the next part, let's have a quick look at how a message is
processed by ServiceMix. The following figure shows how a message is routed by
the NMR. In this case we're showing a reply / response (in-out) message pattern.

In this figure you can see a number of steps being
executed:

1. The consumer creates a message exchange for a specific service and sends a
request.

2. The NMR determines the provider this exchange needs to be sent to and queus
the message for delivery. The provider accepts this message and executes its
business logic.

3. After the provider has finished processing, the response message is returned to
the NMR.

4. The NMR once again queues the message for delivery. This time to the
consumer. The consumer accepts the message.

5. After the response is accepted, the consumer sends a confirmation to the NMR.

6. The NMR routes this confirmation to the provider, who accepts it and ends this
message exchange.

Now that we've seen the architecture and how a message is handled by the NMR,
we'll have a look at how to configure ServiceMix 4.

SECTION 3

Configuration of ServiceMix 4.0
ServiceMix 4 configuration is mostly done through Spring XML files supported by
XML schemas for easy code completion. Let's look at two simple examples. The first
one uses the File Binding component to poll a directory and the second one exposes
a Web service using ServiceMix's CXF support.

In this listing you can see that we define a poller. A poller is one of the standard
components that is provided by ServiceMix's file-binding-component. If we deploy
this configuration to ServiceMix, ServiceMix will start polling the inbox directory for
files. If it finds one, the file will be sent to the specified targetService.

Service Addressing
An important concept to understand when working with ServiceMix is that of services
and endpoints. When you configure services on a component you need to tell
ServiceMix how to route messages to and from that service. This name is called a
service endpoint. If you look back at the previous example we created a file:poller.
On this file:poller we defined a service and an endpoint attribute. These two
attributes together uniquely identify this file:poller. Note though that you can have
multiple endpoints defined on the same service. You can also see a targetService
attribute on the file:poller. Besides this attribute there is also a targetEndpoint
attribute. With these two attributes you identify the service endpoint to sent the
message to. The targetEndpoint isn't always needed, if only one endpoint is
registered on that service.

In the following listing, we've again used a simple XML file. This time we've
configured a webservice.

<beans xmlns:file="http://servicemix.Apache.org/file/1.0"
 xmlns:dzone="http://servicemix.org/dzone/">
 <file:poller service="foo:filePoller"
 endpoint="filePoller"
 targetService="foo:fileSender"
 file="inbox" />
</beans>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.Apache.org/jaxws"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.Apache.org/jaxws http://cxf.Apache.org/schemas/jaxws.
 xsd">
<import resource="classpath:META-INF/cxf/cxf.xml" /> 1
<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />
<import resource="classpath:META-INF/cxf/cxf-extension-http.xml" />
<import resource="classpath:META-INF/cxf/osgi/cxf-extensionosgi.xml" />
 <jaxws:endpoint id="helloWorld"
 implementor="dzone.refcards.HelloWorld"
 address="/HelloWorld"/>

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

SECTION 4

Deployment of ServiceMix 4
Components

In this listing we use a jaxws:endpoint to define a webservice. The implementor
points to a simple POJO annotated with JAX-WS annotations. If this example is
deployed to ServiceMix, ServiceMix will register a webservice based on the value in
the address attribute.

ServiceMix provides a number of different options which you can use to deploy
artifacts. In this section we'll look at these options, and show you how to use these.

ServiceMix 4, deployment options

Name Description

OSGi
Bundles

ServiceMix 4 is built around OSGi and ServiceMix 4 also allows you to deploy your
configurations as an OSGi bundle with all the advantages OSGi provides.

Spring
XML files

ServiceMix 4 support plain Spring XML files.

JBI
artifacts

You can also deploy artifacts following the JBI standard (service assemblies and service
units) to ServiceMix 4.

Feature
descriptors

This is a Karaf specific way for installing applications. It will install the necessary OSGi
bundles and will add configuration defaults. This is mostly used to install core parts of the
ServiceMix distribution.

OSGi bundle deployment
The easiest way to create an OSGi based ServiceMix bundle is by using Maven 2.
To create a bundle you need to take a couple of simple steps. The first one is adding
the mavenbundle- plugin to your pom.xml file. This is shown in the following code
fragment.

 address="/HelloWorld"/>
</beans>

...
<dependencies>
 <dependency>
 <groupId>org.Apache.felix</groupId>
 <artifactId>org.osgi.core</name>
 <version>1.0.0</version>
 </dependency>
 ...
</dependencies>
...
<build>
 <plugins>
 <plugin>
 <groupId>org.Apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>

16
17

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

The important part here is the instructions section. This determines how the plugin
packages your project. For more information on these settings see the maven OSGi
bundle plugin page at http://cwiki.Apache.org/FELIX/Apachefelixmaven-bundle-
plugin-bnd.html.

The next step is to make sure your project is bundled as a OSGi bundle. You do this
by setting the <packaging> element in your pom.xml to bundle.

Now you can use mvn install to create an OSGi bundle, which you can copy to the
deploy directory of ServiceMix and your bundle will be installed. If you use Spring to
configure your application, make sure the Spring configuration files are located in the
META-INF/spring directory. That way the Spring application context will be
automatically created based on these files.

If you don't want to do this by hand you can also use a Maven archetype. ServiceMix
provides a set of archetypes you can use. A good starting point for a project is the
Camel OSGi archetype which you can use by executing the following following
Maven command:

There are many other archetypes available. For an overview of the available
archetypes see: http://repo.fusesource.com/maven2/org/Apache/servicemix/tooling/

Spring XML Files Deployment

It's also possible to deploy Spring files without OSGi. Just drop a Spring file into the
deploy directory. There are two points to take into account. First, you need to add
the following to your Spring configuration file:

This will register the endpoints you've configured in your Spring file. The next
element is optional but is good practice to add:

 <configuration>
 <instructions>
 <Bundle-SymbolicName>${pom.artifactId}</Bundle-SymbolicName>
 <Import-Package>*,org.Apache.camel.osgi</Import-Package>
 <Private-Package>org.Apache.servicemix.examples.camel</Private-Package>
 </instructions>
 </configuration>
 </plugin>
 </plugins>
</build>
...

mvn archetype:create -DarchetypeGroupId=org.Apache.servicemix.tooling
-DarchetypeArtifactId=servicemix-osgi-camel-archetype
-DarchetypeVersion=4.0.0.2-fuse
-DgroupId=com.yourcompany -DartifactId=camel-router
-DremoteRepositories=http://repo.fusesource.com/maven2/

<bean class="org.Apache.servicemix.common.osgi.EndpointExporter" />

17
18
19
20
21
22
23
24
25
26
27

1
2
3
4
5
6

1
2

1

http://cwiki.apache.org/FELIX/Apachefelixmaven-bundle-plugin-bnd.html
http://repo.fusesource.com/maven2/org/Apache/servicemix/tooling/

SECTION 5

Routing in ServiceMix 4.0

Using a manifest configuration element allows you to specify how your application is
registered in ServiceMix.

JBI Artifacts Deployment
If you've already invested in JBI based applications, you can still use ServiceMix 4 to
run them in. Just deploy your Service Assembly (SA) in the ServiceMix deploy
directory and ServiceMix will deploy your application.

Feature Descriptor Based Deployment
If you've got an application which contains many bundles and that requires
additional configuration you can use a feature to easily manage this. A feature
contains a set of bundles and configuration which can be easily installed from the
ServiceMix console. The following listing shows the feature descriptor of the nmr
component.

If you want to install this feature you can just type features/install nmr from the
ServiceMix console.

For routing in ServiceMix you've got two options:

EIP: ServiceMix provides a JBI component that implements a number of
Enterprise Integration Patterns.

Camel: You can use Camel routes in ServiceMix. Camel provides the most
flexible and exhaustive routing options for ServiceMix

EIP Component Routing

<manifest>
 Bundle-Version = 1.0.0
 Bundle-Name = Dzone :: Dzone test application
 Bundle-SymbolicName = dzone.refcards.test
 Bundle-Description = An example for servicemix refcard
 Bundle-Vendor = jos.dirksen@gmail.com
 Require-Bundle = servicemix-file, servicemix-eip
</manifest>

<features>
 <feature name="nmr" version="1.0.0">
 <bundle>mvn:org.Apache.servicemix.document/org.Apache.servicemix.document/1.0.0</bundle>
 <bundle>mvn:org.Apache.servicemix.nmr/org.Apache.servicemix.nmr.api/1.0.0</bundle>
 <bundle>mvn:org.Apache.servicemix.nmr/org.Apache.servicemix.nmr.core/1.0.0</bundle>
 <bundle>mvn:org.Apache.servicemix.nmr/org.Apache.servicemix.nmr.osgi/1.0.0</bundle>
 <bundle>mvn:org.Apache.servicemix.nmr/org.Apache.servicemix.nmr.spring/1.0.0</bundle>
 <bundle>mvn:org.Apache.servicemix.nmr/org.Apache.servicemix.nmr.commands/1.0.0</bundle>
 <bundle>mvn:org.Apache.servicemix.nmr/org.Apache.servicemix.nmr.management/1.0.0</bundle>
 </feature>
</features>

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

10
11
12

EIP Component Routing

This routing is provided by the EIP component. To check whether this is installed in
your ServiceMix runtime you can execute features/list from the ServiceMix
commandline. This will show you a list of installed features. If you see [installed] [
2009.01] servicemix-eip the component is installed. If it shows uninstalled instead
of installed, you can use the features/install servicemix-eip to install this
component. You can now use this router using a simple XML file:

When installed this component provides the following routing options (this
information is also available in the XSD of this component):

XML
Element

Description

async-
bridge

The async bridge pattern is used to bridge an In-Out exchange with two In-Only (or
Robust-In-Only) exchanges. This pattern is the opposite of the pipeline.

content-
basedrouter

Component that can be used for content based routing of the message. You can configure
this component with a set of predicates which define how the message is routed.

content-
enricher

A content enricher can be used to add extra information to the message from a different
source.

message-
filter

With a message filter you specify a set of predicates which determine whether to process
the message or not.

pipeline
The pipeline component is a bridge between an In-Only (or Robust-In- Only) MEP and an
In-Out MEP. This is the opposite of the async bridge.

resequencer
A resequencer can be used to re-order a set of incoming messages before passing them
on in a the new order.

split-
aggregator

A split aggregator is used to reassemble messages that have been split by a splitter.

static-
recipient-list

A static recipient list will forward the incoming message to a set of predefined destinations.

static-
routing-slip

The static routing slip routes a message through a set of services. It uses the result of the
first invocation as input for the next.

wire-tap The wire-tap will copy and forward a message to the specified destination.

xpath-
splitter

This splitter uses an xpath expression to split an incoming message in multiple parts.

Camel Routing

Apache Camel is a project which provides a lof of different routing and integration
options. In this section we'll show how to use Camel with ServiceMix and give an
overview of the routing options it provides. Installing the Camel component in
ServiceMix is done in the same way as we did for the EIP component. We use the

<eip:static-routing-slip service="test:routingSlip" endpoint="endpoint">
 <eip:targets>
 <eip:exchange-target service="test:echo" />
 <eip:exchange-target service="test:echo" />
 </eip:targets>
</eip:static-routing-slip>

1
2
3
4
5
6
7

features/list command to check what's already installed and we can use
features/add to add new Camel functionality. Once installed we can use Camel to
route messages between our components. Camel provides two types of
configuration: XML and Java based DSL, XML configuration was used for the
following two listings:

Camel XML configuration - Listing 1: Camel configuration

Camel XML configuration - Listing 2: Target service

In these two listings you can see how we can easily integrate the Camel routes with
the other components from ServiceMix. We use the nmr prefix to tell Camel to send
the message to the NMR. The other service, which can be seperately deployed will
then pick-up this message since it's also configured to listen to a nmr prefixed
service.

Now let's look at two listings that use Camel's Java based DSL to configure the
routes. For this we need a small XML file describing where the routes can be found,
and a Java file which contains the routing.

Camel Java configuration - Listing 1: Spring configuration

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <import resource="classpath:org/Apache/servicemix/camel/nmr/camel-nmr.xml" />
 <camelContext xmlns="http://camel.Apache.org/schema/spring">
 <route>
 <from uri="ftp://gertv@localhost/testfile?password=secret"/>
 <to uri="nmr:IncomingOrders"/>
 </route>
</beans>

<beans xmlns:file="http://servicemix.Apache.org/file/1.0"
 xmlns:dzone="http://servicemix.org/dzone/">
 <import resource="classpath:org/Apache/servicemix/camel/nmr/camel-nmr.xml" />
 <file:sender service="nmr:IncomingOrders" directory="file:target/pollerFiles" />
</beans>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.
 springframework.org/schema/
 beans/spring-beans-2.0.xsd
 http://activemq.Apache.org/camel/schema/spring
 http://activemq.Apache.org/camel/schema/spring/camel-spring.xsd">

<import resource="classpath:org/Apache/servicemix/camel/nmr/camelnmr.xml" />
 <camelContext xmlns="http://activemq.Apache.org/camel/schema/spring">

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9

10
11
12

SECTION 6

ServiceMix and Web Services

Camel Java configuration - Listing 2: Java route

Camel itself provides a lot of standard functionality. It doesn't just provide routing, it
can also provide connectivity for different technologies. For more information on
Camel please see it's website at http://camel.Apache.org/ or look at the "Enterprise
Integrations Patterns with Camel" Refcard.

Differences between ServiceMix and Camel
If you've looked at the Camel website you notice that it provides much the same
functionality as ServiceMix. It provides connectivity to various standards and
technologies, provides routing and transformation and even allows you to expose
Web services. The main difference though is that Camel isn't a container. Camel is
designed to be used inside some other container. We've shown that you can use
Camel in ServiceMix, but you can also use Camel in other ESBs or in ActiveMQ or
CXF. So if you just want an routing and mediation engine Camel is a good choice. If
you however need a full ESB with good support for JBI, a flexible OSGi based
kernel, hot-deploy and easy administration ServiceMix is the better choice.

Support for Web services is an important feature for an ESB. ServiceMix uses the
CXF project for this. Since CXF is also completely spring based, using CXF to
deploy Web services is very easy.

Hosting Web services

When you want to expose a service as a webservice you can easily do this using
CXF. Just create a CXF OSGi bundle using the archetype: servicemix-osgicxf-
code-first-archetype. This will create an OSGi and CXF enabled maven project
which you can use to develop webservices. Now just edit the src/main/

 <package>dzone.refcards.camel.routes</package>
 </camelContext>
</beans>

public class SimpleRouter extends RouteBuilder {
 public void configure() throws Exception {
 from("timer:myTimerEvent?fixedRate=true")
 .setBody(constant("Hello World!")).
 to("nmr:someService");
 }
}

13
14
15

1
2
3
4
5
6
7
8

http://camel.apache.org/

which you can use to develop webservices. Now just edit the src/main/
resources/META-INF/spring/beans.xml file and after you've run the mvn install
command you can deploy the bundle to ServiceMix. The following listing shows
such an example. This will create a Web service and host it on
http://localhost:8080/cfx/HelloDzone.

CXF Host Web service example using CXF

In the previous example we hoseted a Web service which could be called from
outside the container. You can also configure CXF to host the Web service internally
by prefixing the address with nmr. That way you can easily expose JAX-WS
annotated java beans to the other services inside the ESB. The following example
shows this:

CXF Host Web service internally

You can also host a Web services using the servicemix-cxf-bc component.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.Apache.org/jaxws"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.Apache.org/jaxws http://cxf.Apache.org/schemas/jaxws.
 xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml" />
 <import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />
 <import resource="classpath:META-INF/cxf/cxf-extension-http.xml" />
 <import resource="classpath:META-INF/cxf/osgi/cxf-extensionosgi.xml" />
 <jaxws:endpoint id="helloDZone"
 implementor="dzone.examples.ws.HelloDZoneImpl"
 address="/HelloDzone"/>
</beans>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml" />
 <import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />
 <import resource="classpath:META-INF/cxf/transport/nmr/cxftransportnmr.xml" />
 <jaxws:endpoint id="helloDzone"
 implementor="dzone.examples.ws.HelloDZoneImpl"
 address="nmr:helloDZone" />
</beans>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

http://localhost:8080/cfx/HelloDzone

Host Web service using the servicemix-cxf-bc component

Consuming Web services

Consuming Web services in ServiceMix is just as easy. ServiceMix provides two
different options for this. You can use Camel or use the servicemix-cxf-bc
component:

Consume Web servicemix using the servicemix-cxf-bc component

With this configuration you can consume a Web service which is located at
http://webservice.com/Service and which is defined by the WSDL file target-
service.wsdl. Other services can use this component by making a call to the
dzone:ServicePortService.

You can also consume a Web service using Camel. For more information on how
you can configure the Camel route for this look at the Camel CXF integration section
of the Camel website: http://camel.Apache.org/cxf.html.

For Web services ServiceMix provides the following useful archetypes:

Name Description

servicemix-cxf-bc-
service-unit

Create a maven project which uses the JBI CXF binding component.

servicemix-cxf-se-
service-unit

Create a maven project which uses the JBI CXF service engine.

servicemix-cxf-se-
wsdlfirstservice-unit

Create a maven project which uses the JBI CXF service engine. This project
is based on WSDL first development.

servicemix-osgi-cxf-
codefirstarchetype

Create a maven project which uses CXF and OSGi together. This project is
based on code first development.

servicemix-osgi-cxf- Create a maven project which uses CXF and OSGi together. This project is

<beans xmlns:cxfbc="http://servicemix.Apache.org/cxfbc/1.0"
 xmlns:dzone="http://dzone.org/refcard/example">
 <cxfbc:consumer wsdl="classpath:dzone-example.wsdl"
 targetService="dzone:ExampleService"
 targetInterface="dzone:Example"/>
</beans>

<beans xmlns:cxfbc="http://servicemix.Apache.org/cxfbc/1.0"
 xmlns:dzone="http://dzone.org/refcard/example">
 <cxfbc:provider wsdl="classpath:target-service.wsdl"
 locationURI="http://webservice.com/Service"
 endpoint="ServicePort"
 service="dzone:ServicePortService"/>
</beans>

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8

http://camel.apache.org/cxf.html

SECTION 7

Servicemix Components

wsdlfirstarchetype based on wsdl first development.

Besides integration with Web services through CXF, ServiceMix provides a lot of
components you can use out of the box to integrate with various other standards
and technologies. In this section we'll give an overview of these components. This
list is based on the 2009.1 versions. Most of this information can also be found in
the XML schemas of these components.

ServiceMix Components
XML Element Description

ServiceMix Bean

Endpoint Allows you to define a simple bean that can receive and send message exchanges.

ServiceMix File

Poller
A polling endpoint that looks for a file or files in a directory and sends the files to a
target service. You can configure various options on this endpoint such as archiving,
filters, use of subdirectories etc.

Sender
An endpoint that receives messages from the NMR and writes them to a specific file
or directory.

ServiceMix CXF Binding Component

consumer A consumer endpoint that is capable of using SOAP/HTTP or SOAP/JMS.

Provider A provider endpoint that is capable of exposing SOAP/HTTP or SOAP/JMS services.

ServiceMix CXF Service Engine

Endpoint With the Drools Endpoint you can use a drools rule set as a service or as a router.

ServiceMix FTP

Poller
This endpoint can be used to poll an FTP directory for files, download them and send
them to a service.

Sender With a sender endpoint you can store a message on an FTP server.

ServiceMix HTTP

Consumer
Plain HTTP consumer endpoint. This endpoint can be used to handle plain HTTP
request (without SOAP) or to be able to process the request in a non standard way.

Provider
A plain HTTP provider. This type of endpoint can be used to send non- SOAP
requests to HTTP endpoints.

Soap-Consumer An HTTP consumer endpoint that is optimized to work with SOAP messages.

Soap-Provider An HTTP provider endpoint that is optimized to work with SOAP messages.

ServiceMix JMS

Consumer An endpoint that can receive messages from a JMS broker.

Provider An endpoint that can send messages to a JMS broker.

Soap-Consumer A JMS consumer that is optimized to work with SOAP messages.

Soap-Provider A JMS provider that is optimized to work with SOAP messages.

JCA-Consumer A JMS consumer that uses JCA to connect to the JMS broker.

ServiceMix Mail

Poller An endpoint which can be used to retrieve messages.

Sender An endpoint which you can use to send messages.

ServiceMix OSWorkflow

Endpoint This endpoint can be used to start an OSWorkflow proces.

ServiceMix Quartz

Endpoint The Quartz endpoint can be used to fire messages into the NMR at specific intervals.

ServiceMix Saxon

XSLT
With the XSLT endpoint you can apply an XSLT transformation to the received
message.

Proxy
The proxy component allows you to transform an incoming message and send it to
an endpoint. You can also configure a transformation that needs to be applied to the
result of that invocation.

XQuery The XQuery endpoint can be used to apply a selected XQuery to the input document.

ServiceMix Scripting

Endpoint
With the scripting endpoint you can create a service which is implemented using a
scripting language. The following languages are supported: Groovy, JRuby, Rhino
JavaScript

ServiceMix SMPP

Consumer
A polling component which bind with jSMPP and receive SMPP messages and sends
the SMPPs into the NMR as messages.

Provider
A provider component receives XML message from the NMR and converts into
SMPP packet and sends it to SMPP server.

ServiceMix SNMP

Poller With this poller you can receive SNMP events by using the SNMP4J library.

ServiceMix Validation

Endpoint
With this endpoint you can provide schema validation of documents using JAXP 1.3
and XMLSchema or RelaxNG.

ServiceMix-VFS

Poller
An polling endpoint that looks for a file or files in a virtual file system (based on
Apache commons-vfs) and sends the files to a target service.

Sender
An endpoint which receives messages from the NMR and writes the message to the
virtual file system.

ServiceMix-wsn2005

Create-pullpoint
Lets you create a WS-Notification pull point that can be used by a requester to
retrieve accumulated notification messages.

Publisher Sends messages to a specific topic.

Registerpublisher An endpoint that can be used by publishers to register themselves.

Subscribe
Lets you create subscriptions to a specific topic using the WSNotification
specification.

Publications

Latest

Popular

 NaNundefined NaNundefined

ABOUT US
About DZone
Send feedback
Careers

ADVERTISE
Media Kit
sales@dzone.com
+1 (919) 443-1644

CONTRIBUTE ON DZONE
MVB Program
Zone Leader Program

LEGAL
Terms of Service
Privacy Policy

CONTACT US
150 Preston Executive Drive
Cary, NC 27513
info@dzone.com
+1 (919) 678-0300

LET'S BE FRIENDS

Featured

/pages/about
mailto:support@dzone.com
http://dzone.applytojob.com/apply
/pages/advertise
mailto:sales@dzone.com
tel:+19194431644
/pages/mvb
/pages/zoneleader
/pages/tos
/pages/privacy
mailto:info@dzone.com
tel:+19196780300
/pages/feeds
https://twitter.com/DZone
https://www.facebook.com/DZone-259639764711
https://plus.google.com/+dzone/posts
https://www.linkedin.com/company/dzone

	ServiceMix 4.2
	The Apache Open Source ESB
	About Servicemix 4.0
	Servicemix 4.0 Architecture
	Configuration of ServiceMix 4.0
	Deployment of ServiceMix 4 Components
	JBI Artifacts Deployment
	Feature Descriptor Based Deployment

	Routing in ServiceMix 4.0
	ServiceMix and Web Services
	Servicemix Components
	ServiceMix Components

	Publications

