
Refcard #085

Getting Started with Vaadin
Modern Web Apps in Java
by Marko Grönroos

Create an application, components, themes, data binding, and more in Vaadin.

Free PDF

 DOWNLOAD SAVE

Refcardz: Getting Started with Vaadin SECTIONS 

MENU

Sign In / Join

/
/users/425116/Magi42.html
/asset/download/269

SECTION 1

About Vaadin

SECTION 2

Creating an Application

Vaadin is a server-side Ajax web application development framework that allows you
to build web applications just like with traditional desktop frameworks, such as AWT
or Swing. An application is built from user interface components contained
hierarchically in layout components.

In the server-driven model, the application code runs on a server, while the actual
user interaction is handled by a client-side engine running in the browser. The client-
server communications and any client-side technologies, such as HTML and
JavaScript, are invisible to the developer. As the client-side engine runs as
JavaScript in the browser, there is no need to install plug-ins. Vaadin is released
under the Apache License 2.0.

Figure 1: Vaadin Client-Server Architecture

If the built-in selection of components is not enough, you can develop new
components with the Google Web Toolkit (GWT) in Java.

An application that uses the Vaadin framework needs to inherit the
com.vaadin.Application class and implement the init() method.

import com.vaadin.ui.*; public class HelloWorld extends com.vaadin.Application { public void init() { Window main =
new Window(“Hello window”); setMainWindow(main); main.addComponent(new Label(“Hello World!”)); } }

The basic tasks in writing an application class and the initialization method are:

Inherit the Application class

create and set a main window

populate the window with initial components

define event listeners to implement the UI logic

Optionally, you can also:

set a custom theme for the window

bind components to data

bind components to resources

The application can change the components and the layout dynamically according to
the user input.

Figure 2:Architecture for Vaadin Applications

SECTION 3

Components

You can get a reference to the application object from any component
attached to the application with getApplication()

Event Listeners
In the event-driven model, user interaction with user interface components triggers
server-side events, which you can handle with event listeners.

In the example below, we handle click events for a button with an anonymous class:

Button button = new Button(“Click Me!”); button.addListener(new Button.ClickListener() { public void buttonClick(ClickE
vent event) { getWindow().showNotification(“Thank You!”); } });

Below is a list of the most important event interfaces; their corresponding listener
interfaces are named -Listener.

Event Interface Description

Property.ValueChangeEvent Field components except Button

Button.ClickEvent Button click

Window.CloseEvent A sub-window or an application-level window has been closed

Unless the immediate property (see below) is set, value change events are not
communicated immediately to the server-side when the user changes the values,
but are delayed until the first immediate interaction. Certain events, such as button
clicks, are immediate by default.

Deployment
To deploy an application as a servlet, you must define a WEB-INF/web.xml
deployment descriptor. The application class must be defined in the application
parameter.

<web-app> <display-name>myproject</display-name> <servlet> <servlet-name>Myproject Application</servlet-
name> <servlet-class>com.vaadin.terminal.gwt.server.ApplicationServlet </servlet-class> <init-param> <description>
Vaadin application class to start</description> <param-name>application</param-name> <param-value>com.example
.myproject.HelloWorld</param-value> </init-param> </servlet> <servlet-mapping> <servlet-name>Myproject Applicati
on</servlet-name> <url-pattern>/*</url-pattern> </servlet-mapping> </web-app>

Vaadin components include field, layout, and other components. The component
classes and their inheritance hierarchy are illustrated in Figure 4 (page 3).

Component Properties
Common component properties are defined in the Component interface and the
AbstractComponent base class for all components.

Property Description

caption
A label that identifies the component for the user, usually shown above, left of, or inside a
component, depending on the component and the containing layout.

description A longer description usually displayed as a tooltip when mouse hovers over the component.

enabled
If false, the user can not interact with the component. The component is shown as grayed.
(Default: true)

icon An icon for the component, usually shown left of the caption.

immediate
If true, value changes are communicated immediately to the server-side, usually when the
selection changes or (a text field) loses input focus. The default is false for most
components, but true for Button.

locale
The current country and/or language for the component. Meaning and use are application-
specific for most components. (Default: application locale)

readOnly If true, the user can not change the value. (Default: false)

visible Whether the component is actually visible or not. (Default: true)

Field Properties
Field properties are defined in the Field interface and the AbstractField base class
for fields.

Property Description

required Boolean value stating whether a value for the field is required. (Default: false)

requiredError
Error message to be displayed if the field is required but empty. Setting the error
message is highly recommended for providing user feedback about a failure.

Sizing
The size of components is defined in the Sizeable interface.

Method Description

setWidth()
setHeight()

Set the component size in either fixed units (px, pt, pc, cm, mm, in, or em) or as a
relative percentage (%) of the containing layout. The value “-1” means undefined
size (see below).

setSizeFull()
Sets both dimensions to 100% relative size of the space given by the containing
layout.

setSizeUndefined()
Sets both dimensions as undefined, causing the component to shrink to fit the
content.

Notice that a layout with an undefined size must not contain a component with a
relative (percentual) size.

Validation
All components implementing the Validatable interface, such as all fields, can be
validated with validate() or isValid(). You need to implement a Validator and its
validate() and isValid() methods, and add the validator to the field with
addValidator().

Built-in validators are defined in the com.vaadin.data.validator package and
include:

SECTION 4

Layout Components

include:

Validator Description

DoubleValidator A floating-point value

EmailValidator An email address

IntegerValidator An integer value

RegexpValidator String that matches a regular expression

StringLengthValidator Length of string is within a range

Resources
Icons, embedded images, hyperlinks, and downloadable files are referenced as
resources.

Button button = new Button(“Button with an icon”); button.setIcon(new ThemeResource(“img/myimage.png”));

The external and theme resources are usually static resources. Application
resources are served by the Vaadin application servlet, or by the user application
itself.

Figure 3: Resource classes and interfaces

Class Name Description

ExternalResource Any URL

ThemeResource
A static resource served by the application server from the current theme. The path
is relative to the theme folder.

FileResource Loaded from the file system

ClassResource Loaded from the class path

StreamResource Provided dynamically by the application

Figure 4: The Class Diagram presents all user interface component
classes and the most important interfaces, relationships, and methods.

The layout of an application is built hierarchically from layout components, or more
generally component containers, with the actual interaction components as the leaf
nodes of the component tree.

You start by creating a root layout for the main window and set it with setContent(),
unless you use the default, and then add the other layout components hierarchically
with addComponent().

Margins
The margin of layout components is controlled with the margin property, which you
can set with setMargin(). Once enabled, the HTML element of the layout will contain

can set with setMargin(). Once enabled, the HTML element of the layout will contain
an inner element with <layoutclass>-margin style, for example, v-verticallayout-
margin for a VerticalLayout. You can use the padding property in CSS in a custom
theme to set the width of the margin:

.v-verticallayout-margin { padding-right: 20px; padding-top: 30px; padding-bottom: 40px; }

Spacing
Some layout components allow spacing between the elements. You first need to
enable spacing with setSpacing(true), which enables the <layoutclass>-spacing-on
style for the layout, for example, v-gridlayout-spacing-on for GridLayout. You can
then set the amount of spacing in CSS in a custom theme with the padding-top
property for vertical and padding-left for horizontal spacing, for example as follows:

.v-gridlayout-spacing-on { padding-left: 50px; /* Horizontal spacing */ padding-top: 100px; /* Vertical spacing */ }

Alignment
When a layout cell is larger than a contained component, the component can be
aligned within the cell with the setComponentAlignment() method as in the example
below:

VerticalLayout layout = new VerticalLayout(); Button button = new Button(“My Button”); layout.addComponent(button);
layout.setComponentAlignment(button, Alignment.MIDDLE_CENTER);

Custom Layout
The CustomLayout component allows the use of a HTML template that contains
location tags for components, such as <div location=”hello”>. The components are
inserted in the location elements with the addComponent() method as shown below:

CustomLayout layout = new CustomLayout(“mylayout”); layout.addComponent(new Button(“Hello”), “hello”);

The layout name in the constructor refers to a corresponding .html file in the layouts
subfolder in the theme folder, in the above example layouts/mylayout.html. See
Figure 5 for the location of the layout template.

SECTION 5

Themes

SECTION 6

Data Binding

Vaadin allows customization of appearance of the user interface with themes.
Themes can include CSS style sheets, custom layout HTML templates, and any
graphics.

Custom themes are placed under the WebContent/VAADIN/themes/ folder of the
web application. This location is fixed – the VAADIN folder specifies that these are
static resources specific to Vaadin.

The name of a theme folder defines the name of the theme, to be used for the
setTheme() method:

public void init() { setTheme(“mytheme”); ...

The theme folder must contain the styles.css style sheet and custom layouts must
be placed in the layouts sub-folder, but other contents may be named freely.

Custom themes need to inherit a base theme in the beginning of the styles.css file.
The default theme for Vaadin 6 is reindeer.

@import url(../reindeer/styles.css);

Figure 5: Theme contents

During development, you can let the built-in themes and the default widget
set be loaded dynamically from the Vaadin JAR. For production, it is more
efficient to let them be served statically by the web server. You just need to

extract the VAADIN folder from the JAR.

Vaadin allows binding components directly to data. The data model, illustrated in
Figure 4, is based on interfaces on three levels of containment: properties, items,
and containers.

Properties
The Property interface provides access to a value of a specific class with the
setValue() and getValue() methods.

All field components provide access to their value through the Property interface,
and the ability to listen for value changes with a Property.ValueChangeListener. The
field components hold their value in an internal data source by default, but you can
bind them to any data source with setPropertyDataSource().

SECTION 7

For selection components, the property value points to the item identifier of the
current selection, or a collection of item identifiers in the multiSelect mode.

The ObjectProperty is a wrapper that allows binding any object to a component as a
property.

Items
An item is an ordered collection of properties. The Item interface also associates a
name with each property. Common uses of items include Form data and Table rows.
You can set the data source of a Form with setItemDataSource().

The BeanItem is a special adapter that allows accessing any Java bean (or POJO
with proper setters and getters) through the Item interface. This is especially useful
for binding a Form or a Table to beans.

Containers
A container is a collection of items. It allows accessing the items with an item
identifier associated with each item.

Common uses of containers include selection components, as defined in the
AbstractSelect class, especially the Table and Tree components. (The current
selection is indicated by the property of the field, which points to the item identifier of
the selected item.) You can set the container data source of a field with
setContainerDataSource().

Vaadin includes the following built-in container implementations:

Container Class Description

IndexedContainer Container with integer index keys

BeanItemContainer Container for BeanItems

HierarchicalContainer Tree-like container, used especially by the Tree component

FilesystemContainer Direct access to the file system

Buffering
All field components implement the Buffered interface that allows buffering user
input before it is written to the data source. Buffering is enabled by default.

Method Description

commit() Writes the buffered data to the data source

discard() Discards the buffered data and re-reads the data from the data source

set-/getWriteThrough() When the writeThrough property is true, write buffering is disabled

set-/getReadThrough() When the readThrough property is true, read buffering is disabled

SECTION 7

Creating New Components
Creating a Client-Side Widget
The basic tasks of a client-side component are:

Implement the Paintable interface

Maintain a reference to the ApplicationConnection object

Implement updateFromUIDL() to deserialize state changes from server-side

Serialize state changes to server-side with calls to updateVariable()

Creating a Server-Side Component
The basic tasks of a server-side component are:

Use @ClientWidget annotation for the server-side component class to bind the
component to the client-side counterpart

Implement paintContent() to serialize state changes to client-side with
addVariable() and addAttribute() calls

Implement changeVariables() to deserialize state changes from client-side

Figure 6: Widget integration within the Vaadin client-server communication
architecture

Defining a Widget Set
A widget set is a collection of widgets that, together with the communication
framework, form the Client-Side Engine of Vaadin, when compiled with the GWT
Compiler into JavaScript.

A widget set is defined in a .gwt.xml GWT Module Descriptor. You need to specify at
least one inherited base widget set, typically the DefaultWidgetSet or a custom set.

<module> <inherits name=”com.vaadin.terminal.gwt.DefaultWidgetSet” /> </module>

The client-side source files must be located in the client sub-package under the
package of the descriptor.

You can associate a stylesheet with a widget set with the <stylesheet> element in
the .gwt.xml descriptor:

<stylesheet src=”colorpicker/styles.css”/>

Widget Project Structure
Figure 7 illustrates the source code structure of a widget project (for the

Color Picker example).

Using Widget Sets

Using Widget Sets
You can generate the descriptor of a combining widget set automatically with the
com.vaadin.terminal.gwt.widgetsetutils. WidgetSetBuilder application. It
searches the class path to find all widget sets, including ones packaged in JARs,
and generates the required <inherit> elements.

Give the full name (including the package name) of the widget set as a
parameter. This is the name of the .gwt.xml file without the extension.

Give path to the top-level source directory as the first element of the class path

For more information on Vaadin, visit the Vaadin Blog at http://vaadin.com/blog or
the Forum at http://vaadin.com/forum

Publications

Latest

Popular

 NaNundefined  NaNundefined

ABOUT US
About DZone
Send feedback
Careers

ADVERTISE
Media Kit
sales@dzone.com
+1 (919) 443-1644

CONTRIBUTE ON DZONE
MVB Program
Zone Leader Program

LEGAL
Terms of Service
Privacy Policy

CONTACT US
150 Preston Executive Drive
Cary, NC 27513
info@dzone.com
+1 (919) 678-0300

LET'S BE FRIENDS     

Featured

http://vaadin.com/blog
http://vaadin.com/forum
/pages/about
mailto:support@dzone.com
http://dzone.applytojob.com/apply
/pages/advertise
mailto:sales@dzone.com
tel:+19194431644
/pages/mvb
/pages/zoneleader
/pages/tos
/pages/privacy
mailto:info@dzone.com
tel:+19196780300
/pages/feeds
https://twitter.com/DZone
https://www.facebook.com/DZone-259639764711
https://plus.google.com/+dzone/posts
https://www.linkedin.com/company/dzone

	Getting Started with Vaadin
	Modern Web Apps in Java
	About Vaadin
	Creating an Application
	Event Listeners
	Deployment

	Components
	Component Properties
	Field Properties
	Sizing
	Validation
	Resources

	Layout Components
	Margins
	Spacing
	Alignment
	Custom Layout

	Themes
	Data Binding
	Properties
	Items
	Containers
	Buffering

	Creating New Components
	Creating a Client-Side Widget
	Creating a Server-Side Component
	Defining a Widget Set
	Widget Project Structure
	Using Widget Sets

	Publications

