
Refcard #056

JavaFX
Making it Easier to Build Better RIAs
by Stephen Chin

Gets you started with JavaFX, which makes it easier to build better RIAs with graphics,
animation, and media.

Free PDF

 DOWNLOAD SAVE

Refcardz: SECTIONS 

MENU

Sign In / Join

/
/users/334759/steveonjava.html
/asset/download/210

SECTION 1

About JavaFX

SECTION 2

JFXPoetry, a Simple Example

JavaFX is an exciting new platform for building Rich Internet Applications with
graphics, animation, and media. It is built on Java technology, so it is interoperable
with existing Java libraries, and is designed to be portable across different
embedded devices including mobile phones and set-top boxes. This Refcard will
help you get started programming with JavaFX Script and also serve as a
convenient reference once you have mastered the language.

To get started, you will have to download the latest JavaFX SDK from the JavaFX
website here: http://javafx.com/.

The instructions in the following tutorial assume that you are using an IDE, such as
NetBeans. However, it is possible to do everything from the command line as well.

To illustrate how easy it is to build an application that melds graphics, text,
animation, and media, we will start with a simple tutorial. The goal will be to write an
application that:

Loads and displays an image from the internet

Displays and animates a verse of poetry

Declaratively mixes in graphic effects

Plays media asynchronously

For the JFXPoetry theme, we will use “Pippa’s Song,” a wellknown excerpt from
Robert Browning’s Pippa Passes.

Loading an Image on the Stage
Stage and Scene are the building blocks of almost every JavaFX program. A Stage
can either be represented as a Frame for desktop applications, a rectangle for
applets, or the entire screen for mobile devices. The visual content of a Stage is
called a Scene, which contains a sequence of content Nodes that will be displayed
in stacked order. The following program creates a basic Stage and Scene which is
used to display an image:

var scene:Scene;
Stage {
 title: “Pippa’s Song by Robert Browning”
 scene: scene = Scene {
 content: [
 ImageView {
 image: bind Image {

1
2
3
4
5
6
7
8

http://javafx.com/

Notice that that JavaFX syntax makes it simple to express nested UI structures. The
curly braces “{}” are used for object instantiation, and allow inline initialization of
variables where the value follows the colon “:”. This is used to instantiate an
ImageView with an Image inside that loads its content from the given URL. To
ensure the image resizes with the window, we set preserveRatio to true and bind the
Image. Binding is a very powerful facility in JavaFX that makes it easy to update
values without heavyweight event handlers. Compiling and running this application
will display a picture of a misty morning in Burns Lake, BC, Canada taken by Duane
Conlon as shown in Figure 1.1 2

Figure 1: A JavaFX Stage
containing an image loaded from
the network

Displaying Text with Effects
Displaying text in JavaFX is as simple as instantiating a Text Node and setting the
content to a String. There are many variables available on Text, but for this example
we will set the font, fill color, and also add a Drop Shadow effect to make the text
stand out on the background.

1 Creative Commons Attribution 2.0 License: http://creativecommons.org/licenses/by/2.0/

2 Duane Conlon’s Photostream: http://www.flickr.com/photos/duaneconlon/

 image: bind Image {
 height: scene.height
 preserveRatio: true
 url: “http://farm1.static.flickr.com/39/
 121693644_75491b23b0.jpg”
 }
 }
]
 }
}

var text:Text;
Stage {
 ...
 ImageView {
 ...
 },
 text = Text {

8
9

10
11
12
13
14
15
16
17

1
2
3
4
5
6
7
8

Notice that rather than specifying the whole poem text on one line we have split it
across several lines, which will automatically get concatenated. Also, we have used
the bind operator to set both the font size and y offset, which will update their values
automatically when the scene height changes. Figure 2 shows the updated example
with text overlaid on the Image.

Figure 2: Updated example with
a Text overlay

JavaFX offers a large set of
graphics effects that you can
easily apply to Nodes to create
rich visual effects. Table 1 lists all
the available effects you can
choose from.

Table 1. Graphics effects
available in JavaFX

Effect Description

Blend Blends two inputs together using a pre-defined BlendMode

Bloom Makes brighter portions of the Node appear to glow

BoxBlur Fast blur with a configurable quality threshold

ColorAdjust Per-pixel adjustments of hue, saturation, brightness, and contrast

DisplacementMap Shifts each pixel by the amount specified in a DisplacementMap

DropShadow Displays an offset shadow underneath the node

Flood Fills a rectangular region with the given Color

GaussianBlur Blurs the Node with a configurable radius

Glow Makes the Node appear to glow with a given intensity level

Identity Passes an image through to a chained effect

InnerShadow Draws a shadow on the inner edges of the Node

InvertMask Returns a mask that is the inverse of the input

 text = Text {
 effect: DropShadow {}
 font: bind Font.font(“Serif”, FontWeight.BOLD,
 scene.height / 12.5)
 fill: Color.GOLDENROD
 x: 10
 y: bind scene.height / 6
 content: “The year’s at the spring,\n”
 “And day’s at the morn;\n”
 “Morning’s at seven;\n”
 “The hill-side’s dew-pearled;\n”
 “The lark’s on the wing;\n”
 “The snail’s on the thorn;\n”
 “God’s in His heaven--\n”
 “All’s right with the world!”
 }

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

InvertMask Returns a mask that is the inverse of the input

Lighting Simulates a light source to give Nodes a 3D effect

MotionBlur Blurs the image at a given angle to create a motion effect

PerspectiveTransform Maps a Node to an arbitrary quadrilateral for a perspective effect

Reflection Displays an inverted view of the Node to create a reflected effect

SepiaTone Creates a sepia tone effect to mimic aged photographs

Shadow Similar to a DropShadow, but without the overlaid image

Animated Transitions
Animations in JavaFX can be accomplished either by setting up a Timeline from
scratch, or using one of the pre-fabricated Transitions. To animate the Text rising
onto the screen, we will use a TranslateTransition, which adjusts the position of a
Node in a straight line for the specified duration:

By setting an interpolator of EASEOUT, the text will start at full speed and gradually
deaccelerate as it approaches its destination. Animations and Transitions can also
be configured to repeat, run at a specific rate, or reverse. To run the transition, all
you need to do is call the play() function, which will animate the text as shown in
Figure 3.

Figure 3: Animated Text Scrolling
Into View

Table 2 lists all of the available
transitions that are part of the
JavaFX API. To get a feel for how
the different transitions work, try
adding a FadeTransition that will
gradually fade the background in
over a 5 second duration.

Table 2. Transitions Supported by
JavaFX

Transition Description

FadeTransition Changes the opacity of a node over time

ParallelTransition Plays a sequence of transitions in parallel

PathTransition Animates nodes along a Shape or Path

PauseTransition Executes an action after the specified delay

var animation = TranslateTransition {
 duration: 24s
 node: text
 fromY: scene.height
 toY: 0
 interpolator: Interpolator.EASEOUT
}
animation.play();

1
2
3
4
5
6
7
8
9

PauseTransition Executes an action after the specified delay

RotateTransition Changes the rotation of a node over time

ScaleTransition Changes the size of a node over time

SequentialTransition Plays a sequence of transitions in series

TranslateTransition Changes the position of a node over time

Interacting with Controls
The JavaFX 1.2 release features a new library of skinnable controls written in pure
JavaFX. Table 3 lists some of the new controls and what they can be used for.

Table 3. Controls Available in JavaFX 1.2

Control Description

Button Button that can contain graphics and text

CheckBox Selectable box that can be checked, unchecked, or undefined

Hyperlink HTML-like clickable text link

Label Text that can be associated with anther control

ListView Scrollable list that can contain text or Nodes

ProgressBar Progress bar that can show percentage complete or be indeterminate

RadioButton Selectable button that can belong to a group

ScrollBar Scroll control typically used for paging

Slider Draggable selector of a number or percent

TextBox Text input control

The simplest control to use is a Button, which can easily be scripted to play the
animation sequence again from the beginning.

Ths bind operator is used to both hide the button while the animation is playing and
also center the button in the window. Initially the button is invisible, but we added a
new SequentialTransition that plays a FadeTransition to show the button after the
translation is complete. Clicking the button shown in Figure 4 will hide it and play the
animation from the beginning.

var button:Button;
Stage {
...
text = Text {
...
 },
 button = Button {
 translateX: bind (scene.width - button.width) / 2
 translateY: bind (scene.height - button.height) / 2
 text: “Play Again”
 visible: bind not animation.running
 action: function() {
 animation.playFromStart();
 }
 }
]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

animation from the beginning.

Figure 4: Button Control to Play
the Animation Again

Panning with Layouts
JavaFX 1.2 comes with several new layouts that make it easy to design complex
UIs. One of these is the ClipView, which we will use to support dragging of the poem
text. ClipView takes a single Node as the input and allows the content to be panned
using the mouse:

To ensue the ClipView takes the full window, its width and height are bound to the
scene. Also, we have overridden the maxClipX variable with a value of 0 to restrict
panning to the vertical direction. The text can now be dragged using the mouse as
shown in Figure 5.

Figure 5: Panning the Text using
a ClipView

Table 4 lists all of the available
layouts that come JavaFX comes
with. HBox and VBox have been
around since the 1.0 release, but
all the other layouts are new in
JavaFX 1.2.

Table 4. Layouts Available in
JavaFX 1.2

 content: [
...
 ClipView {
 width: bind scene.width
 height: bind scene.height
 override var maxClipX = 0
 node: text = Text {
...
 }
 }

1
2
3
4
5
6
7
8
9

10
11

Layout Description

HBox Lays out its contents in a single, horizontal row

VBox Lays out its contents in a single, vertical column

ClipView Clips its content Node to the bounds, optionally allowing panning

Flow Lays out its contents either vertically or horizontally with wrapping

Stack Layers its contents on top of each other from back to front

Tile Arranges its contents in a grid of evenly sized tiles

Finishing with Media
JavaFX has built-in media classes that make it very simple to play audio or video
either from the local files or streaming off the network. To complete the example we
will add in a public domain clip of Indigo Bunting birds chirping in the background.
Adding in the audio is as simple as appending a MediaPlayer with autoPlay set to
true that contains a Media object pointing to the URL.

In this example we are using an mp3 file, which is supported across platforms by
JavaFX. Table 5 lists some of the common media formats supported by JavaFX,
including all the crossplatform formats.

Table 5. Common Media Formats Supported by JavaFX

Type Platform Format File Extension

Audio Cross-platform MPEG-1 Audio Layer 3 mp3

Audio Cross-platform Waveform Audio Format wav

Audio Macintosh Advanced Audio Coding m4a, aac

Audio Macintosh Audio Interchange File Format aif, aiff

Video Platform Format File Extension

Video Cross-platform Flash Video flv, f4v

Video Cross-platform JavaFX Multimedia fxm

Video Windows Windows Media Video wmv, avi

Video Macintosh QuickTime mov

Video Macintosh MPEG-4 mp4

To try the completed example complete with animation and audio, you can click on
the following url:

http://jfxtras.org/samples/jfxpoetry/JFXPoetry.jnlp

The full source code for this application is available on the JFXtras Samples

MediaPlayer {
 autoPlay: true
 media: Media {
 source: “http://video.fws.gov/sounds/35indigobunting.mp3”
 }
}

1
2
3
4
5
6
7

http://jfxtras.org/samples/jfxpoetry/JFXPoetry.jnlp

The full source code for this application is available on the JFXtras Samples
website: http://jfxtras.org/portal/samples

Running on Mobile
To run the sample in the Mobile Emulator all you have to do is pass in the MOBILE
profile to the javafxpackager program or switch the run mode in your IDE project
properties. JavaFX Mobile applications are restricted to the Common Profile, which
does not include all the features of desktop applications. The full list of restrictions is
shown in Table 5.

Table 5. Functionality Not Available in the Common Profile

Class(es) Affected Variables and Methods

javafx.ext.swing.* All

javafx.reflect.* All

javafx.scene.Node effect, style

javafx.scene.Scene stylesheets

javafx.scene.effect.* All

javafx.scene.effect.light.* All

javafx.scene.shape.ShapeIntersect All

javafx.scene.shape.ShapeSubtract All

javafx.scene.text.Font autoKern, embolden, letterSpacing, ligatures, oblique, position

javafx.stage.AppletStageExtension All

javafx.util.FXEvaluator All

javafx.util.StringLocalizer All

Over 80% of the JavaFX API is represented in the Common Profile, so it is not hard
to build applications that are portable. In this example we used a DropShadow on
the text that, once removed, will let us run the example in the Mobile Emulator as
shown in Figure 6.

Figure 6: JFXPoetry application
running in the Mobile Emulator

Running as a Desktop Widget
You can deploy your application as a desktop widget using the WidgetFX open-
source framework. Any JavaFX application can be converted to a widget by
including the WidgetFX-API.jar and making some small updates to the code.

The Following code fragment highlights the code changes required:

var widget:Widget = Widget {
1
2

http://jfxtras.org/portal/samples

SECTION 3

JavaFX Reference

The updates to the code include the following three changes:

Wrap your application in a Widget class. The Widget class extends
javafx.scene.layout.Panel, which makes it easy to extend.

Set the initial widget width/height and modify references from scene to widget.

Return the widget at the end of the script.

To run the widget, simply change your project properties to run the application using
Web Start Excecution. This will automatically create a JNLP file compatible with
WidgetFX and launch the Widget Runner, which allows you to test your widget as
shown in the Figure 7.

Figure 7: JFXPoetry running as a
desktop widget

For more information about
WidgetFX, including SDK
download, documentation, and
additional tutorials, check out the
project
website:http://widgetfx.org/

Language Reference
JavaFX supports all the Java datatypes plus a new Duration type that simplifies
writing animationed UIs.

var widget:Widget = Widget {
 resizable: false
 width: 500
 height: 375
 content: [
...
 height: widget.height
...
 font: bind Font.font(“Serif”, FontWeight.BOLD,
 widget.height / 12.5)
...
 y: bind widget.height / 6
...
]
}

...
 fromY: widget.height
...
widget;

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1
2
3
4
5

 http%3A//widgetfx.org/

writing animationed UIs.

Data Types:

DataType Java Equivalent Range Examples

Boolean boolean true or false true,false

Integer int -2147483648 to 2147483647 2009, 03731, 0x07d9

Number float 1.40×10 45 and 3.40×1038 3.14, 3e8, 1.380E-23

String String N/A “java’s”, ‘in”side”er’

Duration <None> -263 to 263-1 milliseconds 1h, 5m, 30s, 500ms

Character char 0 to 65535 0,20,32

Byte byte -128 to 127 -5, 0,5

Short short -32768 to 32767 -300, 0, 521

Long long -263 to 263-1 2009, 03731,0x07d9

Float float 1.40x10 45 and 3.40x1038 3.14, 3e8, 1.380E-23

Double double 4.94x10 324 and 1.80x10308 3.14, 3e8, 1.380E-123

JavaFX Characters cannot accept literals like ‘a’ or ‘0’, because they are treated as
Strings. The primary way of getting Characters will be by calling a Java API that
returns a char primitive, although you can create a new character by assigning a
numeric constant

Operators:

The following table lists all the mathematical, conditional, and boolean operators
along with their precedence (1 being the highest).

Operator Meaning Precedence Examples

++ Pre/post increment 1 ++i, i++

-- Pre/post decrement 1 --i, i--

not Boolean negation 2 not (cond)

* Multiply 3 2 * 5, 1h * 4

/ Divide 3 9 / 3, 1m / 3

mod Modulo 3 20 mod 3

+ Add 4 0 + 2, 1m + 20s

- Subtract (or negate) 4 (2) -2, 32 - 3, 1h - 5m

== Equal 5 value1 == value2, 4 == 4

!= Not equal 5 value1 != value2, 5 != 4

< Less than 5 value1 < value2, 4 < 5

<= Less than or equal 5 value1 <= value2, 5 <= 5

< Greater than 5 value1 > value2, 6 > 5

>= Greater than or equal 5 value1 >= value2, 6 >= 6

instanceof Is instance of class 6 node instanceof Text

as Typecast to class 6 node as Text

and Boolean and 7 cond1 and cond2

or Boolean or 8 cond1 or cond2

+= Add and assign 9 value += 5

-= Subtract and assign 9 value -= 3

*= Multiply and assign 9 value *= 2

/= Divide and assign 9 value /=4

= Assign 9 value = 7

Multiplication and division of two durations is allowed, but not meaningful

Underflows/Overflows will fail silently, producing inaccurate results

Divide by zero will throw a runtime exception

Sequences:

JavaFX sequences provide a powerful resizable and bindable list capability under a
simple array-like syntax. All of the sequence operators (sizeof, reverse, indexof)
have a relative precedence of 2.

Operation Syntax Examples

Construct

Size sizeof seq sizeof nums; // = 4

Index indexof variable

Element seq[i] letters[2]; // = “c”

Slice

Predicate seq[x|boolean] nums[n|n mod 2 == 0]; // = [2, 4]

Reverse reverse seq reverse letters; // = [“c”, “b”, “a”]

Insert

[x,y,z]
[y..z]
[y..<z]
[y..z step w]

var nums = [1, 2, 3, 4]; var letters = [“a”,
[1..5] = [1, 2, 3, 4, 5]
[1..>5] = [1, 2, 3, 4]
[1..9 step 2] = [1, 3, 5, 7, 9]

for(x in seq) {
indexof x;
}

eq[x..y]
seq[x..<y]

nums[1..2]; // = [2, 3]
letters[0..<2]; // = [“a”, “b”]

insert x into seq
insert x before seq[i]
insert x after seq[i]

insert 5 into nums; // = [1, 2, 3, 4, 5]
insert “gamma” before letters[2]; // = [“a”, “b”,
“gamma”, “c”]
insert “2.3” after nums[1]; // = [1, 2, 2.3, 3, 4]

1
2
3
4
5

1
2
3
4
5

1
2
3
4

1
2
3

1
2
3

1
2
3
4

1
2
3
4
5

Delete

The javafx.util.Sequences class provides additional functions, which allow you
to manipulate sequences, such as min, max, search, shuffle, and short.

Nested sequences are automatically flattened, so [[1,2], [3,4]] is equivalent to
[1,2,3,4].

Sequences require commas after all elements except close braces; however it
is recommended to always use commas

You can declare a sequence as a nativearray. This is an optimization so that
arrays returned from a Java method don’t need to be converted to a sequence.

Access Modifiers:

The JavaFX access modifiers are based upon Java with the addition of extra
variable-only modifiers.

Modifier Name Description

<Default> Script only access
Only accessible within the
same script file

package Package access
Only accessible within the
same package

protected Protected access
Only accessible within the
same package or by
subclasses

public Public access Can be accessed anywhere

publicread
Var/def modifier to allow a
variable to be read anywhere

public-init Init access modifier
Var/def modifier to allow a
variable to be initialized or
read anywhere

Unlike Java the default permission in JavaFX is script-only rather than
package.

The var/def access modifiers can be stacked with other modifiers, such as
public-read protected

insert “2.3” after nums[1]; // = [1, 2, 2.3, 3, 4]

delete seq[i]
delete seq[x..y]
delete x from seq
delete seq

delete letters[1]; // = [“a”, “c”]
delete nums[1..2]; // = [1, 4]
delete “c” from letters; // = [“a”, “b”]
delete letters; // = []

Read access
modifier

5

1
2
3
4
5

1
2
3
4
5

1
2
3

Expressions:

JavaFX supports many of the same expressions as Java, but adds in powerful inline
functions and for loop extensions.

Expression Syntax

if

for

while while (bool) expr

function function(params):returnType{}

if (cond) expr1 else expr2
if (cond) then expr1 else expr2

for (x in seq) expr
for (x in seq where cond) expr
for (x in seq, y in x) expr

try/catch/
finally

try {expr1} catch(exception)
{expr2} finally {expr3}

1
2
3

1
2
3
4

1
2
3

1
2
3

Just like in Java programs:

continue can be used to skip a for or while loop iteration

break can be used to exit a for or while loop

return can be used to exite from a function event if inside a loop

Magic Variables:

JavaFX provides some built-in variables that can be accessed from any code
running inside a script.

Name Description

__DIR__ Directory the current classfile is contained in

__FILE__ Full path to the current classfile

__PROFILE__ The current profile, which can be ‘desktop’ or ‘mobile’

API Reference
In the short span of a few pages you have already seen quite a bit of the JavaFX
platform. Some other functionality that JavaFX offers includes:

Package Description

javafx.animation Animation and Interpolation

javafx.async Asynchronous Tasks and Futures

javafx.data.feed RSS/Atom Feed support

javafx.data.pull XML and JSON Pull Parsers

javafx.ext.swing Additional Swing-based Widgets

javafx.fxd Production Suite (FXD)

javafx.io Local Data Storage

javafx.reflect JavaFX Reflection Classes

javafx.chart Charting and Graphing

javafx.scene.media Media (Audio and Video) Playback

javafx.scene.shape Vector Shapes

An easy way to view and navigate the full JavaFX API is using the JFXplorer
application. The following URL will launch it in as a web start application that you
can use to start exploring the JavaFX API today:

http://jfxtras.org/samples/jfxplorer/JFXplorer.jnlp

Additional Resources
JavaFX API documentation:
http://java.sun.com/javafx/1.2/docs/api/

JFXStudio, a great place to find sample JavaFX
applications: http://jfxstudio.wordpress.com/

http://jfxtras.org/samples/jfxplorer/JFXplorer.jnlp
http://java.sun.com/javafx/1.2/docs/api/
applications%3A http%3A//jfxstudio.wordpress.com/

applications: http://jfxstudio.wordpress.com/

JFXtras, utilities and add-ons for JavaFX: http://jfxtras.org/

WidgetFX, deploy your JavaFX application as a desktop ,br> widget:
http://widgetfx.org/

Sang Shin and Jim Weaver’s Free JavaFX Class:
http://www.javapassion.com/javafx

Publications

Latest

Popular

 NaNundefined  NaNundefined

ABOUT US
About DZone
Send feedback
Careers

ADVERTISE
Media Kit
sales@dzone.com
+1 (919) 443-1644

CONTRIBUTE ON DZONE
MVB Program
Zone Leader Program

LEGAL
Terms of Service
Privacy Policy

CONTACT US
150 Preston Executive Drive
Cary, NC 27513
info@dzone.com
+1 (919) 678-0300

LET'S BE FRIENDS     

Featured

 http%3A//jfxtras.org/
widget%3A http%3A//widgetfx.org/
http://www.javapassion.com/javafx
/pages/about
mailto:support@dzone.com
http://dzone.applytojob.com/apply
/pages/advertise
mailto:sales@dzone.com
tel:+19194431644
/pages/mvb
/pages/zoneleader
/pages/tos
/pages/privacy
mailto:info@dzone.com
tel:+19196780300
/pages/feeds
https://twitter.com/DZone
https://www.facebook.com/DZone-259639764711
https://plus.google.com/+dzone/posts
https://www.linkedin.com/company/dzone

	JavaFX
	Making it Easier to Build Better RIAs
	About JavaFX
	JFXPoetry, a Simple Example
	Loading an Image on the Stage
	Displaying Text with Effects
	Animated Transitions
	Interacting with Controls
	Panning with Layouts
	Finishing with Media
	Running on Mobile
	Running as a Desktop Widget

	JavaFX Reference
	Language Reference
	API Reference
	Additional Resources

	Publications

