TSA and CSA	
TSA: Total Surface Area	CSA: Curved Surface Area
Cuboid	
$S A=2 \times I \times w+2 \times I \times h+2 \times h \times w$	
SA = Surface Area	
I = Length	
w = Width (Base)	
$\mathrm{h}=$ Height	
Cube	
$S A=6 a^{2}$	
SA = Surface Area	
$\mathrm{a}=1$ side	
Cylinder	
SA $=2 \mathrm{x} \pi \mathrm{xrxh}+2 \mathrm{x} \pi \mathrm{x} \mathrm{r}^{2}$	
SA = Surface Area	
$r=$ Radius	
h = Height	

By Cheat

cheatography.com/cheat/

Sphere
SA $=4 \times \pi \times r^{2}$
$r=$ Radius
SA $=$ Surface Area
Hemisphere
CSA $=2 \times \pi \times r^{2}$
CSA $=$ Curved Surface Area
$r=$ Radius
Tetrahedron
SA $=4 \times$ ($\times \mathrm{r}^{2}$)
SA $=$ Surface Area
$r=$ Radius
Triangular Prism
For The Triangles $=2 \times(b \times h \times 1 / 2)$
For The Rectangles $=3 \times(1 \times$ a)
$b=$ Base(or Width $)$
$a=1$ side (or c)
$h=$ Height
$I=$ Length

Cone

CSA $=\pi \times r \times 1$
TSA $=\pi x r x I+\pi \times r^{2}$
TSA = Total Surface Area
CSA = Curved Surface Area
r = Radius
I = Length

Pyramid

$$
A=l w+l \sqrt{\left(\frac{w}{2}\right)^{2}+h^{2}}+w \sqrt{\left(\frac{l}{2}\right)^{2}+h^{2}}
$$

Sponsored by Readable.com

Measure your website readability! https://readable.com

