

Chemistry 1030: Unit 5 - Bonding and Nomenclature Cheat Sheet by chantalcramm via cheatography.com/169234/cs/35427/

Review

Valance Electron: Group Number.

Compound: A substance composed of two or more elements in fixed, definite proportions.

Forming lons

Atoms of metals have few valance electrons (1-2) thus they tend to lose electrons to form a positive ion (cations).

Atoms of non-metals have many valance electrons (4-7) thus they tend to gain electrons to form negative ions (anions).

They do this to become stable in their outer shell.

Ionic Bonding: Type I

Format:	Name of	Base Name of
	Cation	Anion (non-metal)
	(metal)	+ ide
Example:	NaCl	Sodium Chloride
	MgBr ²	Magnesium

Brom*ide*

Roman Numerals

1 = I	3 = III	5 = V	7 = VII
2 = 11	4 = IV	6 = VI	8 = VIII

Ionic Bonding: Type II

Format:	Name	(Charge	Base
	of	of cation	name of
	Cation	(metal) in	Anion
	(metal)	roman	(non-m-
		numerals)	etal) +
			ide
Example: CuCl	Copper	(1)	Chlor <i>ide</i>

By chantalcramm

cheatography.com/chantalcramm/

Ionic Bonding: Type II (cont)

CuCl² Copper (II) Chlor*ide*

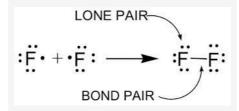
VSEPR Theory

VSEPR: A theory based on the idea that electron groups (lone pairs, single bonds, or multiple bonds) repel each other.

VSEPR Ther

Drawing the Lewis Structure/Bonding

Step Draw the lewis structure for each One: covalent compound.


Step Identify the bonds as single,

Two: double, or triple.

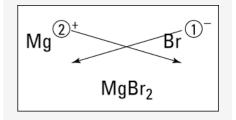
Step Label the bonding and non-bo-

Three: nding electrons.

Example

Bonding - Why?

Octet Rule: Atoms bond in such a way as to obtain a full outer shell (8).


Bonding involved valance electrons only.

In general, atoms either transfer or share electrons to obtain a full outer shell (8).

Valance electrons are responsible for the chemical properties of an atom.

Not published yet. Last updated 13th November, 2022. Page 1 of 2.

Ionic Bonding: Dot and Cross

Naming Compounds: Nomenclature

Is it lonic? (Metal + One or more non-metals)

If so go to Type I and Type II.

OR

Is it Covalent? (All non-metals)

If so go to Type III.

Electron Groups

To determine the shape of a molecule, count only electron groups around the central atom.

Each of the following is consider *one electron group*:

Non-Bonding Pair - (A lone *pair* of electrons)

Bonding Electrons - (single, double, or triple)

Example: CH⁴ has 4 electron groups (4 single bonds, 0 lone pairs)

Drawing Molecular Geometries

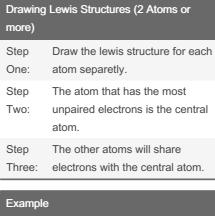
Straight Line:	Bond in plane of paper.
Hashed Line:	Bonding going into paper.
Wedge:	Bond coming out of the paper.

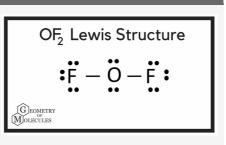
Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords! http://crosswordcheats.com

Chemistry 1030: Unit 5 - Bonding and Nomenclature Cheat Sheet by chantalcramm via cheatography.com/169234/cs/35427/

Terms	
Single Bond:	One pair of electrons shared between two atoms (Cl ²)
Double Bond:	Two pairs of electrons shared between two atoms. (O ²)
Triple Bond:	Three pairs of electrons shared between two atoms. (N^2)
Bonding Electrons:	Electrons shared between atoms.
Non-Bo- nding Electrons:	Electrons only found on one atom. (Lone pairs)
Overall:	Draw the lewis structure and determine how they will bond with one another to have full outer shells (8).
	Identify the bonding and non-bonding electrons.


Summary	
Ionic Bonding:	Covalent Bonding:
Metal + One or more non-metals.	All non-metals.
Electrons are transferred.	Electrons are shared.
lons are formed.	lons are not formed.
Ex. NaHCO ³ or NaCl	Ex. F ² or CO ²


Prefixes				
1 =	3 =	5 =	7 =	9 =
Mono	Tri	Penta	Hepta	Nona
2 = Di	4 =	6 =	8 =	10 =
	Tetra	Hexa	Octa	Deca

Covalent Bonding: Type III				
Format:	Prefix	Base name element 1	Prefix	Base name of element 2 + <i>ide</i>
Example: N ² O	Di	nitrogen	Mono	xide -
IF^3		lodine	Tri	Fluor <i>ide</i>
B^2H^8	Di	boron	Octa	hydr <i>ide</i>
CS ²		Carbon	Di	sulf <i>ide</i>

Molecular Geometries			
Linear	Bent (V-shaped)	Trigonal planar	Trig
8-0-3	8 3	3 A 3	(
Bond angles 180° CO2	<180° 50 ₂	120° BCl ₃	•
	Bond 180° CO2	Linear Bent (V-shaped) Bond 180° <180° angles	Linear Bent (V-shaped) Trigonal planar Bond angles 180° <180° 120° CO ₂ SO ₂ BCI ₃

Possible Geometries

C

By chantalcramm

cheatography.com/chantalcramm/

Not published yet.

Last updated 13th November, 2022.

Page 2 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com