

Chemistry 1030: Unit 5 - Bonding and Nomenclature Cheat Sheet by chantalcramm via cheatography.com/169234/cs/35427/

Review

Valance Electron: Group Number.

Compound: A substance composed of two or more elements in fixed, definite proportions.

Forming lons

Atoms of metals have few valance electrons (1-2) thus they tend to lose electrons to form a positive ion (cations).

Atoms of non-metals have many valance electrons (4-7) thus they tend to gain electrons to form negative ions (anions).

They do this to become stable in their outer shell.

Ionic Bonding: Type I

Format:	Name of	Base Name of
	Cation	Anion (non-metal)
	(metal)	+ ide
Example:	NaCl	Sodium Chloride
	MgBr ²	Magnesium
		Brom <i>ide</i>

Roman Numerals

1 = I	3 = III	5 = V	7 = VII
2 = II	4 = IV	6 = VI	8 = VIII

Ionic Bonding: Type II

Format:	Name	(Charge	Base
	of	of cation	name of
	Cation	(metal) in	Anion
	(metal)	roman	(non-m-
		numerals)	etal) +
			ide
Example: CuCl	Copper	(I)	Chlor <i>ide</i>

cheatography.com/chantalcramm/

Ionic Bonding: Type II (cont)

CuCl² Copper (II) Chloride

VSEPR Theory

VSEPR: A theory based on the idea that electron groups (lone pairs, single bonds, or multiple bonds) repel each other.

VSEPR Ther

Drawing the Lewis Structure/Bonding

Step Draw the lewis structure for each One: covalent compound.

Step Identify the bonds as single,

Two: double, or triple.

Step Label the bonding and non-bo-

Three: nding electrons.

Example

Bonding - Why?

Page 1 of 2.

Octet Rule: Atoms bond in such a way as to obtain a full outer shell (8).

Bonding involved valance electrons only.

In general, atoms either transfer or share electrons to obtain a full outer shell (8).

Valance electrons are responsible for the chemical properties of an atom.

Not published yet. Last updated 13th November, 2022.

Ionic Bonding: Dot and Cross

Naming Compounds: Nomenclature

Is it Ionic? (Metal + One or more non-metals)

If so go to Type I and Type II.

OR

Is it Covalent? (All non-metals)

If so go to Type III.

Electron Groups

To determine the shape of a molecule, count only electron groups around the central atom.

Each of the following is consider *one electron group*:

Non-Bonding Pair - (A lone *pair* of electrons)

Bonding Electrons - (single, double, or triple)

Example: CH⁴ has 4 electron groups (4 single bonds, 0 lone pairs)

Drawing Molecular Geometries

Straight Line:	Bond in plane of paper.
Hashed Line:	Bonding going into paper.
Wedge:	Bond coming out of the paper.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish

Yours

https://apollopad.com

Cheatography

Chemistry 1030: Unit 5 - Bonding and Nomenclature Cheat Sheet by chantalcramm via cheatography.com/169234/cs/35427/

Possible Geometries

Molecular Geometries

Terms	
Single Bond:	One pair of electrons shared between two atoms (Cl ²)
Double Bond:	Two pairs of electrons shared between two atoms. (O ²)
Triple Bond:	Three pairs of electrons shared between two atoms. (N ²)
Bonding Electrons:	Electrons shared between atoms.
Non-Bo- nding Electrons:	Electrons only found on one atom. (Lone pairs)
Overall:	Draw the lewis structure and determine how they will bond with one another to have full outer shells (8).
	Identify the bonding and non-bonding electrons.

Summary	
Ionic Bonding:	Covalent Bonding:
Metal + One or more non-metals.	All non-metals.
Electrons are transferred.	Electrons are shared.
lons are formed.	lons are not formed.
Ex. NaHCO ³ or NaCl	Ex. F ² or CO ²

Prefixes					
1 =	3 =	5 =	7 =	9 =	
Mono	Tri	Penta	Hepta	No	na
2 = Di	4 =	6 =	8 =	10	=
	Tetra	Hexa	Octa	De	ca
Covalent Bonding: Type III					
Format:	Pre	fix Base	e P	refix	Base
		nam	е		nam
		elen	nent		elem

Format:	Prefix	Base	Prefix	Base
		name		name of
		element		element
		1		2 + <i>ide</i>
Example: N ² O	Di	nitrogen	Mono	xide -
IF^3		lodine	Tri	Fluor <i>ide</i>
B^2H^8	Di	boron	Octa	hydr <i>ide</i>
CS ²		Carbon	Di	sulf <i>ide</i>

By chantalcramm

cheatography.com/chantalcramm/

Not published yet. Last updated 13th November, 2022. Page 2 of 2. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!
https://apollopad.com