\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{chanhmuoi} \pdfinfo{ /Title (meteorology-chapter-1-4.pdf) /Creator (Cheatography) /Author (chanhmuoi) /Subject (Meteorology Chapter 1-4 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{DCC4FF} \definecolor{LightBackground}{HTML}{F6F0FF} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Meteorology Chapter 1-4 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{chanhmuoi} via \textcolor{DarkBackground}{\uline{cheatography.com/198300/cs/41938/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}chanhmuoi \\ \uline{cheatography.com/chanhmuoi} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 4th January, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Scientific Method}} \newline % Row Count 1 (+ 1) - Make observations \newline % Row Count 2 (+ 1) - Make a hypothesis \newline % Row Count 3 (+ 1) - Has to be tested \newline % Row Count 4 (+ 1) - Make prediction assuming hypothesis is true \newline % Row Count 5 (+ 1) - Carry out experiments \newline % Row Count 6 (+ 1) - Mathematics is the tool to understand and predict the natural world \newline % Row Count 8 (+ 2) {\bf{Scientific Method and Meteorology}} \newline % Row Count 9 (+ 1) - Atmosphere obeys laws of physics and chemistry \newline % Row Count 10 (+ 1) - Instruments allow us to quantify the state of the atmosphere \newline % Row Count 12 (+ 2) - Thermometer \newline % Row Count 13 (+ 1) - Hygrometer \newline % Row Count 14 (+ 1) - How much humidity/moisture in air \newline % Row Count 15 (+ 1) - Barometer \newline % Row Count 16 (+ 1) - Air pressure \newline % Row Count 17 (+ 1) - Anemometer \newline % Row Count 18 (+ 1) - Wind speed/wind direction \newline % Row Count 19 (+ 1) - Mathematics can project current conditions into the future \newline % Row Count 21 (+ 2) - Uses computer models to help with calculating \newline % Row Count 23 (+ 2) {\bf{Weather and Climate}} \newline % Row Count 24 (+ 1) - Weather describes state of the atmosphere at any given time \newline % Row Count 26 (+ 2) - Temperature \newline % Row Count 27 (+ 1) - Air Pressure \newline % Row Count 28 (+ 1) - Humidity \newline % Row Count 29 (+ 1) - Cloud Cover \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Precipitation \newline % Row Count 1 (+ 1) - Visibility \newline % Row Count 2 (+ 1) - WInd Velocity \newline % Row Count 3 (+ 1) - Climate describes average atmospheric conditions over at least 30 years \newline % Row Count 5 (+ 2) - Includes extremes \newline % Row Count 6 (+ 1) - The frequency of extremes help differentiate between locations with similar averages \newline % Row Count 8 (+ 2) {\bf{Meteorology}} \newline % Row Count 9 (+ 1) - Meteorologica \newline % Row Count 10 (+ 1) - Book on natural philosophy by Aristotle in 340 BC \newline % Row Count 12 (+ 2) - How meteorology got its name \newline % Row Count 13 (+ 1) - Study of the atmosphere and its phenomena \newline % Row Count 14 (+ 1) - Began with the invention of weather instruments (1450-1650) \newline % Row Count 16 (+ 2) - Quantified the atmosphere \newline % Row Count 17 (+ 1) - Allows for the prediction of what the atmosphere will do \newline % Row Count 19 (+ 2) - Telegraph (1843) \newline % Row Count 20 (+ 1) - Allowed for the transmission of current weather conditions across vast areas \newline % Row Count 22 (+ 2) - Weather Map Analyses (1869) \newline % Row Count 23 (+ 1) - Visual snapshot of current state of the atmosphere \newline % Row Count 25 (+ 2) - Understanding of Air Masses adn fronts (1920) \newline % Row Count 26 (+ 1) - Key weather features that drive world weather patterns \newline % Row Count 28 (+ 2) - Daily weather ballon launches (1940s) \newline % Row Count 29 (+ 1) - These radiosondes provide 3D view of the atmosphere \newline % Row Count 31 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- Numerical Weather Prediction (NWP) \newline % Row Count 1 (+ 1) - Solving the mathematical laws of physics/chemistry at high speeds \newline % Row Count 3 (+ 2) {\bf{Remote Sensing of the Atmosphere}} \newline % Row Count 4 (+ 1) - Weather Radar (1940s) \newline % Row Count 5 (+ 1) - Detects precipitation targets from over 100 miles away \newline % Row Count 7 (+ 2) - Doppler Weather Radar (1990s) \newline % Row Count 8 (+ 1) - Detects precipitation targets and their motion \newline % Row Count 10 (+ 2) - "Sees" the wind \newline % Row Count 11 (+ 1) - Dual Pole Doppler Weather Radar (2000s) \newline % Row Count 12 (+ 1) - Distinguishes between rain, snow, hail, and bugs \newline % Row Count 14 (+ 2) - Weather Satellites (1960s) \newline % Row Count 15 (+ 1) - Reveal weather features produced by cloud patterns \newline % Row Count 17 (+ 2) - Can supply NWP with data from every location on Earth \newline % Row Count 19 (+ 2) - Most Common Type of Satellite \newline % Row Count 20 (+ 1) - Geostationary \newline % Row Count 21 (+ 1) - Orbits the Earth at the same speed the Earth spins \newline % Row Count 23 (+ 2) - GOES 16 and 17 Satellites \newline % Row Count 24 (+ 1) - Best View of the US \newline % Row Count 25 (+ 1) - Centered over the Equator (0º Latitude) and 75º W | 137ºW Longitude \newline % Row Count 27 (+ 2) - 22,300 Miles \newline % Row Count 28 (+ 1) {\bf{Latitude}} \newline % Row Count 29 (+ 1) - the angle made between center of Earth and a point on surface using the Equator as the reference line \newline % Row Count 32 (+ 3) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - North Pole = 90º N Latitude | South Pole = 90ºS Latitude \newline % Row Count 2 (+ 2) - Most of the US is between 30ºN and 50ºN Latitude \newline % Row Count 4 (+ 2) {\bf{Longitude}} \newline % Row Count 5 (+ 1) - the angle made between center of Earth and a point on surface using the Prime Meridian as the reference line \newline % Row Count 8 (+ 3) - Runs from N Pole to S Pole through Greenwich, England \newline % Row Count 10 (+ 2) - Most of the US lies between 70ºW and 125ºW Longitude \newline % Row Count 12 (+ 2) {\bf{Most Common Type of Storm System}} \newline % Row Count 13 (+ 1) - Middle-Latitude Cyclonic Storm System \newline % Row Count 14 (+ 1) - Extratropical Cyclone \newline % Row Count 15 (+ 1) - Cyclone=area of low pressure \newline % Row Count 16 (+ 1) - Anticyclones=are of high pressure \newline % Row Count 17 (+ 1) {\bf{Depiction of Winds}} \newline % Row Count 18 (+ 1) - Wind is defined from the direction it is blowing \newline % Row Count 20 (+ 2) - Represented by a line {\emph{- wind barb -}} drawn parallel to wind \newline % Row Count 22 (+ 2) - Points in direction from which the wind is blowing \newline % Row Count 24 (+ 2) - Speed is represented by wind flags \newline % Row Count 25 (+ 1) - Full flag = 10 knots \newline % Row Count 26 (+ 1) - Half flag = 5 knots \newline % Row Count 27 (+ 1) {\bf{Wind Flow}} \newline % Row Count 28 (+ 1) - Counterclockwise and inward around lows \newline % Row Count 29 (+ 1) - Clockwise and outward around highs \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{In Southern hemisphere… \newline % Row Count 1 (+ 1) - Clockwise/inward around lows \newline % Row Count 2 (+ 1) - Counterclockwise/outward around highs \newline % Row Count 3 (+ 1) - Wind does not cycle around the equator \newline % Row Count 4 (+ 1) - No hurricanes but tornados can still happen \newline % Row Count 5 (+ 1) {\bf{Vertical Wind Flow Around High and Lows}} \newline % Row Count 6 (+ 1) - Air converges and rises in the center of low pressure (cyclone) \newline % Row Count 8 (+ 2) - Clouds/precipitation \newline % Row Count 9 (+ 1) - Air diverges and sinks in the center of high pressure (anticyclone) \newline % Row Count 11 (+ 2) - Clear skies \newline % Row Count 12 (+ 1) {\bf{Weather Fronts}} \newline % Row Count 13 (+ 1) - Cold front \newline % Row Count 14 (+ 1) - Boundary that separates colder air from warmer air \newline % Row Count 16 (+ 2) - When colder air advances and replaces warmer air \newline % Row Count 18 (+ 2) - Warm front \newline % Row Count 19 (+ 1) - Boundary that separates colder air from warmer air \newline % Row Count 21 (+ 2) - When warmer air advances and replaces colder air \newline % Row Count 23 (+ 2) - Occluded front \newline % Row Count 24 (+ 1) - When cold front merges with warm front \newline % Row Count 25 (+ 1) - All fronts are usually but not always associated with rising air, clouds, and precipitation \newline % Row Count 27 (+ 2) {\bf{Impacts of Weather and Climate}} \newline % Row Count 28 (+ 1) - Weather dictates the clothes we wear on any given day \newline % Row Count 30 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- Climate dictates the clothes we have in our wardrobe \newline % Row Count 2 (+ 2) - Climate dictates the type of crops we can grow \newline % Row Count 3 (+ 1) - Weather dictates whether the crops can be harvested \newline % Row Count 5 (+ 2) {\bf{When Weather is Not What it Seems}} \newline % Row Count 6 (+ 1) - Wind Chill \newline % Row Count 7 (+ 1) - Body perceives a lower temperature than it really is \newline % Row Count 9 (+ 2) - Hypothermia \newline % Row Count 10 (+ 1) - Frostbite \newline % Row Count 11 (+ 1) - Heat Index \newline % Row Count 12 (+ 1) - Body perceives a higher temperature than it really is \newline % Row Count 14 (+ 2) - Hyperthermia \newline % Row Count 15 (+ 1) - Heat Exhaustion or Heatstroke \newline % Row Count 16 (+ 1) {\bf{Other Biological Impacts}} \newline % Row Count 17 (+ 1) - Rapid pressure falls/rising humidity \newline % Row Count 18 (+ 1) - Can induce expansion of joints and cause joint pain \newline % Row Count 20 (+ 2) - Wind flowing downhill heats up - Chinook winds/ Santa Ana \newline % Row Count 22 (+ 2) - Incidence of depression increases \newline % Row Count 23 (+ 1) {\bf{Economical Impacts of Weather}} \newline % Row Count 24 (+ 1) - Warm winters = lower heating bills \newline % Row Count 25 (+ 1) - Beware of unusual winter severe weather outbreaks \newline % Row Count 27 (+ 2) - Cold winters = higher heating bills \newline % Row Count 28 (+ 1) - Severe Artic air cold snaps can threaten human lives/infrastructure damage/massive crop losses \newline % Row Count 30 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- Heat Waves and Drought \newline % Row Count 1 (+ 1) - Crops losses \newline % Row Count 2 (+ 1) - Wildfires increase \newline % Row Count 3 (+ 1) - \#1 in weather-related fatalities \newline % Row Count 4 (+ 1) {\bf{Climate Change Bringing More Extremes}} \newline % Row Count 5 (+ 1) - Heat waves and drought increasing \newline % Row Count 6 (+ 1) - Flooding events increasing \newline % Row Count 7 (+ 1) - Hurricane intensity increasing \newline % Row Count 8 (+ 1) {\bf{ Other Weather Hazards}} \newline % Row Count 9 (+ 1) - Severe Thunderstorms \newline % Row Count 10 (+ 1) - 50 knot (58 mph) winds \newline % Row Count 11 (+ 1) - 1-in hail \newline % Row Count 12 (+ 1) - Tornado \newline % Row Count 13 (+ 1) - It has to fulfill one condition to be considered \newline % Row Count 15 (+ 2) - Flash Flooding \newline % Row Count 16 (+ 1) - Slow-moving thunderstorms \newline % Row Count 17 (+ 1) - "Training" storms \newline % Row Count 18 (+ 1) - Downburst winds \newline % Row Count 19 (+ 1) - Macroburst- greater than 4 km (2.5 mi) in diameter \newline % Row Count 21 (+ 2) - Microburst - less than 4 km in diameter \newline % Row Count 22 (+ 1) - Both produce Wind Shear \newline % Row Count 23 (+ 1) - Change in wind speed/direction over short distance \newline % Row Count 25 (+ 2) {\bf{ Who Studies This?}} \newline % Row Count 26 (+ 1) - Meteorologist \newline % Row Count 27 (+ 1) - Professionaly trained, college degree in atmospheric science \newline % Row Count 29 (+ 2) - Weathercaster \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Good communicator of weather information \newline % Row Count 1 (+ 1) {\bf{Weather Business is Expanding}} \newline % Row Count 2 (+ 1) - Private Meteorological \newline % Row Count 3 (+ 1) - App Development \newline % Row Count 4 (+ 1) - Forensic services \newline % Row Count 5 (+ 1) {\bf{Fundamentals of Meteorology}} \newline % Row Count 6 (+ 1) The atmosphere is a mixture of gases \newline % Row Count 7 (+ 1) - Nitrogen \newline % Row Count 8 (+ 1) - Oxygen \newline % Row Count 9 (+ 1) - Argon \newline % Row Count 10 (+ 1) - Water Vapor (highly variable) \newline % Row Count 11 (+ 1) - Carbon Dioxide (generally increasing) \newline % Row Count 12 (+ 1) Most of the gases are near the surface \newline % Row Count 13 (+ 1) - Air gets "thinner" as you go up \newline % Row Count 14 (+ 1) 99\% of atmosphere is within 19 mi of teh surface \newline % Row Count 15 (+ 1) - Blocks deadly solar radiation from reaching the surface \newline % Row Count 17 (+ 2) {\bf{The First Atmosphere}} \newline % Row Count 18 (+ 1) - 4.6 BYA the atmosphere was mostly hydrogen and helium \newline % Row Count 20 (+ 2) - Some methane and ammonia thrown in \newline % Row Count 21 (+ 1) - Hydrogen and helium escaped into space \newline % Row Count 22 (+ 1) - Earth's gravity not strong enough \newline % Row Count 23 (+ 1) {\bf{The Second Atmosphere}} \newline % Row Count 24 (+ 1) - Outgassing from Earth's hot interior (volcanoes) \newline % Row Count 26 (+ 2) - Mostly water vapor (80\%), carbon dioxide (10\%), and some nitrogen \newline % Row Count 28 (+ 2) - Water vapor "condensed" into clouds with rain lasting 1000s of years \newline % Row Count 30 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Combined with asteroid/comet collisions that formed the oceans \newline % Row Count 2 (+ 2) {\emph{Water Vapor Levels in Atmosphere Drop}} \newline % Row Count 3 (+ 1) - Most of the water vapor converted to liquid water \newline % Row Count 5 (+ 2) - Atmosphere now just a few \% water vapor \newline % Row Count 6 (+ 1) {\emph{ CO2 Levels Drop}} \newline % Row Count 7 (+ 1) - CO2 readily dissolves in water \newline % Row Count 8 (+ 1) - Combined with chemicals in the ocean to form limestone \newline % Row Count 10 (+ 2) {\emph{N2 Levels Increase}} \newline % Row Count 11 (+ 1) - Nitrogen is not very chemically reactive \newline % Row Count 12 (+ 1) - Once in the atmosphere, tends to stay \newline % Row Count 13 (+ 1) {\emph{O2}} \newline % Row Count 14 (+ 1) - Solar radiation splits water vapor into hydrogen and oxygen \newline % Row Count 16 (+ 2) - Hydrogen escaped into space \newline % Row Count 17 (+ 1) - Oxygen left behind \newline % Row Count 18 (+ 1) - 2.4 BYA, something wonderful happens \newline % Row Count 19 (+ 1) - Cyanobacteria (blue-green algae) produce O2 from photosynthesis \newline % Row Count 21 (+ 2) - Earth begins to cool \newline % Row Count 22 (+ 1) - O2 combines with O to form O3 (ozone) \newline % Row Count 23 (+ 1) - O3 in upper atmosphere absorbs incoming radiation cooling the Earth \newline % Row Count 25 (+ 2) - Methane breaks down in the presence of O2 \newline % Row Count 26 (+ 1) - Warming effect of methane weakens \newline % Row Count 27 (+ 1) - Earth becomes very cold \newline % Row Count 28 (+ 1) - Cyanobacteria proliferate around the world removing CO2 from atmosphere \newline % Row Count 30 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Warming effect of carbon dioxide weakens \newline % Row Count 2 (+ 2) {\bf{First Mass Extinction}} \newline % Row Count 3 (+ 1) - Earth gets covered in ice \newline % Row Count 4 (+ 1) - Frigid Earth no longer supporting life \newline % Row Count 5 (+ 1) - No O2 being produced \newline % Row Count 6 (+ 1) - O2 is highly reactive/combines with other elements to form rocks \newline % Row Count 8 (+ 2) - O2 levels drop worldwide \newline % Row Count 9 (+ 1) {\bf{Life Gets a Second Chance}} \newline % Row Count 10 (+ 1) -{}- Outgassing increases water vapor/carbon dioxide (volcanoes) \newline % Row Count 12 (+ 2) - H2O and CO2 are warming gases \newline % Row Count 13 (+ 1) - Takes over a billion years for new photosynthesizing life to reappear \newline % Row Count 15 (+ 2) - After another 1/2 billion years, O2 levels are where they are today \newline % Row Count 17 (+ 2) {\bf{Water Vapor}} \newline % Row Count 18 (+ 1) - 0\% to 4\% of the atmosphere \newline % Row Count 19 (+ 1) - Always invisible \newline % Row Count 20 (+ 1) - Become visible when vapor molecules "jump" on each other to form droplets or ice crystals \newline % Row Count 22 (+ 2) - Condensation form droplets \newline % Row Count 23 (+ 1) - Deposition form ice crystals \newline % Row Count 24 (+ 1) - Evaporation is when liquid turns to gas \newline % Row Count 25 (+ 1) - Water is only substance that can exist in all 3 phases at normal temperature/pressure \newline % Row Count 27 (+ 2) {\bf{ Characteristics}} \newline % Row Count 28 (+ 1) - Greenhouse Gas \newline % Row Count 29 (+ 1) - Very effective at absorbing outgoing radiation emitted by Earth \newline % Row Count 31 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Re-emits some of this energy back keeping the Earth warmer \newline % Row Count 2 (+ 2) {\bf{Carbon Dioxide}} \newline % Row Count 3 (+ 1) - Greenhouse Gas \newline % Row Count 4 (+ 1) - Comes from the decay of vegetation \newline % Row Count 5 (+ 1) - Volcanic eruptions \newline % Row Count 6 (+ 1) - Burning of coal, oil, natural gas (fossil fuels) \newline % Row Count 8 (+ 2) - Removed by photosynthesis of land and ocean plants \newline % Row Count 10 (+ 2) - CO2 gets stored in roots, branches, and leaves \newline % Row Count 12 (+ 2) - Chemical weathering of rocks \newline % Row Count 13 (+ 1) - CO2 dissolves in rainwater \newline % Row Count 14 (+ 1) - Forms carbonic acid \newline % Row Count 15 (+ 1) - Combines with minerals in rocks and becomes part of the rock \newline % Row Count 17 (+ 2) - Dissolves in Ocean water \newline % Row Count 18 (+ 1) - Used by sea critters to make shells \newline % Row Count 19 (+ 1) - Eventually sinks to bottom of the sea \newline % Row Count 20 (+ 1) {\bf{Vertical Structure of the Atmosphere}} \newline % Row Count 21 (+ 1) Air is compressible \newline % Row Count 22 (+ 1) - Gravity pulls most -but not all- air molecules near the surface \newline % Row Count 24 (+ 2) - Air Density = \# of air molecules in a given volume \newline % Row Count 26 (+ 2) - Mass/volume \newline % Row Count 27 (+ 1) Air Density and Air Pressure \newline % Row Count 28 (+ 1) - Force exerted by air molecules against a surface \newline % Row Count 30 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Same thing as the weight of the air above you \newline % Row Count 2 (+ 2) - At sea level, air weighs 14.7 lbs per square inch \newline % Row Count 4 (+ 2) {\bf{Measuring Air Pressure}} \newline % Row Count 5 (+ 1) - 14.7 lbs/in2 \newline % Row Count 6 (+ 1) - 1013.25 millibars (mb) \newline % Row Count 7 (+ 1) - 29.92 in Hg \newline % Row Count 8 (+ 1) {\bf{Atmosphere is Very Thin}} \newline % Row Count 9 (+ 1) - Half of the air molecules is below 5.5 km (18,000 ft) \newline % Row Count 11 (+ 2) - 99.9\% is below 50 km (160,000 ft) \newline % Row Count 12 (+ 1) {\bf{ Layers of the Atmosphere}} \newline % Row Count 13 (+ 1) - Atmospheric layers are defined by how the temperature changes with height \newline % Row Count 15 (+ 2) - Lapse Rate= rate at which temperature decreases with height \newline % Row Count 17 (+ 2) - In lower atmosphere, lapse rate = 6.5ºC per km (3.6ºF per 1000 ft) \newline % Row Count 19 (+ 2) - Temperature can INCREASE with height \newline % Row Count 20 (+ 1) - This is called temperature inversion \newline % Row Count 21 (+ 1) - Lapse rate is negative \newline % Row Count 22 (+ 1) - Troposphere \newline % Row Count 23 (+ 1) - Stratosphere \newline % Row Count 24 (+ 1) - Mesosphere \newline % Row Count 25 (+ 1) - Thermosphere \newline % Row Count 26 (+ 1) - Ionosphere \newline % Row Count 27 (+ 1) - Lower part of the Thermosphere \newline % Row Count 28 (+ 1) - Solar energy strips electrons from N2 and O2 causing them to glow \newline % Row Count 30 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Northern and Southern Lights}} \newline % Row Count 1 (+ 1) - Aurora Borealis - N. Lights \newline % Row Count 2 (+ 1) - Aurora Australis - S. Lights% Row Count 3 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 2}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- Energy \newline % Row Count 1 (+ 1) - The ability to do "work": when an object moves \newline % Row Count 3 (+ 2) - Kinetic Energy \newline % Row Count 4 (+ 1) - Energy of motion- translational, rotational and vibrational \newline % Row Count 6 (+ 2) - Potential Energy \newline % Row Count 7 (+ 1) - Energy that can convert to kinetic energy \newline % Row Count 8 (+ 1) - Water that is behind a dam \newline % Row Count 9 (+ 1) - Object suspended in the sky \newline % Row Count 10 (+ 1) - Temperature \newline % Row Count 11 (+ 1) - Average kinetic energy of atoms in a substance \newline % Row Count 13 (+ 2) - Some move fast, others not so fast \newline % Row Count 14 (+ 1) - Average motion = temperature \newline % Row Count 15 (+ 1) - When molecules move, rotate, and/or vibrate, we say that the object has a temperature \newline % Row Count 17 (+ 2) - When air molecules move slowly, they crowd together \newline % Row Count 19 (+ 2) - It is cold and air is dense \newline % Row Count 20 (+ 1) - When air molecules move quickly, they spread out \newline % Row Count 22 (+ 2) - We say it is warm and the air is less dense \newline % Row Count 24 (+ 2) - Internal Energy (Heat energy) \newline % Row Count 25 (+ 1) - The total kinetic and potential energy of all atoms or molecules \newline % Row Count 27 (+ 2) - Heat \newline % Row Count 28 (+ 1) - Heat is the transfer of energy from warmer objects to cooler ones \newline % Row Count 30 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 2 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - The bigger the temperature difference, the faster the energy transfer \newline % Row Count 2 (+ 2) - Know how to convert temperature scales \newline % Row Count 3 (+ 1) \#\# Temperature Measurements \newline % Row Count 4 (+ 1) - Important Temperature Values \newline % Row Count 5 (+ 1) - Ice point \newline % Row Count 6 (+ 1) - Ice melts, water freezes \newline % Row Count 7 (+ 1) - 32ºF, 0ºC, 273.15K \newline % Row Count 8 (+ 1) - Steam point \newline % Row Count 9 (+ 1) - Water boils \newline % Row Count 10 (+ 1) - 212ºF, 100ºC, 373.15 K \newline % Row Count 11 (+ 1) \#\# Types of Heat Energy \newline % Row Count 12 (+ 1) - Sensible Heat \newline % Row Count 13 (+ 1) - Heat energy that can be absorbed or released by a substance that results in a change of temperature \newline % Row Count 16 (+ 3) - Latent Heat \newline % Row Count 17 (+ 1) - Heat energy that is absorbed or released by a substance when the substance undergoes a phase change \newline % Row Count 20 (+ 3) - Temperature of substance does not change \newline % Row Count 22 (+ 2) - Let ice at 32ºF absorb heat energy \newline % Row Count 23 (+ 1) - Ice melts, but its temp remains at 32ºF \newline % Row Count 24 (+ 1) - Only after the ice completely melts will the water warm up \newline % Row Count 26 (+ 2) - If water freezes, it releases the same heat it took to cause it to melt in the first place but water temp does not change \newline % Row Count 29 (+ 3) - The surrounding air does warm \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 2 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- How does heat energy get transferred? \newline % Row Count 1 (+ 1) - Conduction \newline % Row Count 2 (+ 1) - Heat transfer by contact of one substance with another \newline % Row Count 4 (+ 2) - Energy gets transferred from one molecule to the next \newline % Row Count 6 (+ 2) - Some materials transfer heat better than others \newline % Row Count 8 (+ 2) - Metals are good conductors \newline % Row Count 9 (+ 1) - Fiberglass, cork, wood, cloth, glass, water are poor conductors \newline % Row Count 11 (+ 2) - Air is a poor conductor of heat \newline % Row Count 12 (+ 1) - Heat (Thermal) Conductivity \newline % Row Count 13 (+ 1) - Measure of how well a substance transfers heat energy \newline % Row Count 15 (+ 2) \#\# Why Temperature Decreases with Height \newline % Row Count 16 (+ 1) - Atmosphere is mostly "transparent" to incoming sunlight \newline % Row Count 18 (+ 2) - Sun does not heat air directly \newline % Row Count 19 (+ 1) - Atmosphere can be heated by conduction \newline % Row Count 20 (+ 1) - Ground absorbs sunlight \newline % Row Count 21 (+ 1) - Air in contact with ground gets heated \newline % Row Count 22 (+ 1) - Heat energy does not get conducted to higher altitudes very well \newline % Row Count 24 (+ 2) \#\# How Does Heat Energy Get Transferred? \newline % Row Count 25 (+ 1) - Convection \newline % Row Count 26 (+ 1) - Heat transferred due to the movement of a substance from one place to another \newline % Row Count 28 (+ 2) - Much more efficient than conduction \newline % Row Count 29 (+ 1) - Moving heat energy vertically and horizontally \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 2 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Convection - vertical air motions, also called thermals \newline % Row Count 2 (+ 2) - Advection - horizontal air motions \newline % Row Count 3 (+ 1) - Radiation (Electromagnetic Radiation or Radiant Energy) \newline % Row Count 5 (+ 2) - The only heat transfer possible in a vacuum \newline % Row Count 6 (+ 1) - Can also transfer heat in air or water \newline % Row Count 7 (+ 1) - Energy is carried by photon particles defined by their wavelength \newline % Row Count 9 (+ 2) - nm=nanometer= billionth of a meter \newline % Row Count 10 (+ 1) - µm=micrometer or micron= millionth of a meter \newline % Row Count 12 (+ 2) \#\# Radiation Laws \newline % Row Count 13 (+ 1) - Facts \newline % Row Count 14 (+ 1) - All objects above Absolute Zero radiate (emit) energy at ALL wavelengths \newline % Row Count 16 (+ 2) - 0K = -273.15ºC= -459.67ºF \newline % Row Count 17 (+ 1) - Even in interstellar space, the temperature is between 2.7K and 5K \newline % Row Count 19 (+ 2) - Total Radiation emitted = Sum of energy emitted from every wavelength \newline % Row Count 21 (+ 2) - Total Energy emitted by every square meter of an object is given by the Stefan-Boltzmann Law \newline % Row Count 24 (+ 3) - E=o x T\textasciicircum{}4 (results is in Watts per square meter, W/m\textasciicircum{}2 or W m\textasciicircum{}-2 \newline % Row Count 26 (+ 2) - Watts=Joules per second, J/s or Js\textasciicircum{}-1 \newline % Row Count 28 (+ 2) - Temperature has to be in Kelvins \newline % Row Count 30 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 2 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - o is constant variable \newline % Row Count 1 (+ 1) - Hot objects emit more radiation than cooler objects \newline % Row Count 3 (+ 2) - There is one wavelength ({\bf{λ\_}}max) that an object will emit most of its radiation \newline % Row Count 5 (+ 2) - Wien's Displacement Law \newline % Row Count 6 (+ 1) - {\bf{λ\_}}max = 2897/T (answer is in µm) \newline % Row Count 8 (+ 2) - T must be expressed in Kelvin \newline % Row Count 9 (+ 1) - Stefan-Boltzmann and Wien's Law \newline % Row Count 10 (+ 1) - Only valid if object is a blackbody object \newline % Row Count 12 (+ 2) - An object that is a perfect absorber and perfect emitter of radiation \newline % Row Count 14 (+ 2) - Absorbs all radiation that strikes it and then emits max possible radiation \newline % Row Count 16 (+ 2) - Absorption and Emission \newline % Row Count 17 (+ 1) - If an object absorbs radiation, it must also emit radiation \newline % Row Count 19 (+ 2) - If absorption is greater than emission, object heats up \newline % Row Count 21 (+ 2) - If absorption is less than emission, object cools down \newline % Row Count 23 (+ 2) - If absorption = emission, object's temperature remains the same \newline % Row Count 25 (+ 2) - Radiative Equilibrium Temperature \newline % Row Count 26 (+ 1) - Absorption \newline % Row Count 27 (+ 1) - Gas molecules are picky about which type of radiation they will absorb \newline % Row Count 29 (+ 2) - Selective Absorbers \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 2 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Some will only eat shortwave radiation \newline % Row Count 2 (+ 2) - Shortwave is less than 1.4µm \newline % Row Count 3 (+ 1) - Some will only eat longwave radiation \newline % Row Count 5 (+ 2) - Longwave is greater than 1.4 µm \newline % Row Count 7 (+ 2) - Some will eat both or neither \newline % Row Count 8 (+ 1) - Air is mostly transparent to incoming solar radiation \newline % Row Count 10 (+ 2) - Air is not transparent to outgoing terrestrial radiation \newline % Row Count 12 (+ 2) - Some gases absorb Earth's outgoing radiation and then reemit some of it back to the surface \newline % Row Count 14 (+ 2) \#\# Main Greenhouse Gases \newline % Row Count 15 (+ 1) - Water Vapor \newline % Row Count 16 (+ 1) - Carbon Dioxide \newline % Row Count 17 (+ 1) - Methane \newline % Row Count 18 (+ 1) - Nitrous Oxide \newline % Row Count 19 (+ 1) - Ozone \newline % Row Count 20 (+ 1) \#\#\# Benefit of the Greenhouse Effect \newline % Row Count 21 (+ 1) - Average temperature of the Earth is 59ªF \newline % Row Count 22 (+ 1) - Without greenhouse gases, it would be 0ºF \newline % Row Count 24 (+ 2) \#\# What Else Happens to Radiation When it Enters the Atmosphere? \newline % Row Count 26 (+ 2) - Transmission \newline % Row Count 27 (+ 1) - Radiation passing through air molecules without interacting with any of them \newline % Row Count 29 (+ 2) - About 55\% of incoming solar radiation is transmitted \newline % Row Count 31 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 2 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- Reflection \newline % Row Count 1 (+ 1) - Radiation that bounces off an object at the same angle object, and it leaves at the same intensity \newline % Row Count 4 (+ 3) - Scattering \newline % Row Count 5 (+ 1) - Produces a large number of rays traveling in all different directions \newline % Row Count 7 (+ 2) - Scattered radiation is weaker than what originally hit the object \newline % Row Count 9 (+ 2) - Gasses scatter solar radiation preferentially \newline % Row Count 10 (+ 1) - Some wavelengths are scattered better \newline % Row Count 11 (+ 1) - Atmospheric gases - mostly N2 and O2 scatter blue/violet more effectively than reds/oranges \newline % Row Count 13 (+ 2) - Violet is scattered best \newline % Row Count 14 (+ 1) - Blue is at higher intensity level than violet \newline % Row Count 16 (+ 2) - Human eye detects blue better than violet \newline % Row Count 17 (+ 1) - When Sun is on horizon, light travels through a lot more atmosphere than when Sun is overhead \newline % Row Count 19 (+ 2) \#\# Quantifying Reflected Radiation \newline % Row Count 20 (+ 1) - Albedo \newline % Row Count 21 (+ 1) - Percentage of radiation reflected by an object \newline % Row Count 23 (+ 2) - Average albedo for Earth is about 30 percent \newline % Row Count 25 (+ 2) - Average albedo for the Moon is about 7 to 12 percent \newline % Row Count 27 (+ 2) - A perfect reflector would have an albedo of 100\% \newline % Row Count 29 (+ 2) - Saturn's moon Enceladus has an albedo of almost 100\% \newline % Row Count 31 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 2 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{\#\# What Causes Temperature Differences? \newline % Row Count 1 (+ 1) - Solar Radiation Intensity largely determines temperature \newline % Row Count 3 (+ 2) - High solar radiation intensity=tropical areas \newline % Row Count 5 (+ 2) - Low solar radiation intensity = arctic/antarctic area \newline % Row Count 7 (+ 2) - Solar Radiation Intensity = Power/Area \newline % Row Count 8 (+ 1) - Partly determined by height of Sun above horizon \newline % Row Count 10 (+ 2) - Midday sun always high in the sky in the Tropics \newline % Row Count 12 (+ 2) - Midday sun never high in the sky in Arctic/Antarctic areas \newline % Row Count 14 (+ 2) \#\# Important Dates to Remember \newline % Row Count 15 (+ 1) - Solstices and Equinoxes \newline % Row Count 16 (+ 1) - Summer solstice: June 21 or 22 \newline % Row Count 17 (+ 1) - At solar noon, sun's rays are vertical at Tropic of Cancer 23 1/2º N Latitude \newline % Row Count 19 (+ 2) - Longest day \newline % Row Count 20 (+ 1) - WInter solstice: December 21 or 22 \newline % Row Count 21 (+ 1) - Vertical rays at Tropic of Capricorn: 23 1/2ºS Latitude \newline % Row Count 23 (+ 2) - Shortest day \newline % Row Count 24 (+ 1) - Autumnal equinox: September 22 or 23 \newline % Row Count 25 (+ 1) - Vertical rays at the equator \newline % Row Count 26 (+ 1) - day and night are equal \newline % Row Count 27 (+ 1) - Vernal (spring) equinox: March 21 or 22 \newline % Row Count 28 (+ 1) - Vertical rays at the equator \newline % Row Count 29 (+ 1) - 12 hour days/nights everywhere \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 2 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{\#\# Solar Noon \newline % Row Count 1 (+ 1) - The time when the sun reaches its highest point in the sky \newline % Row Count 3 (+ 2) - halfway between sunrise and sunset \newline % Row Count 4 (+ 1) \#\# Solar Declination \newline % Row Count 5 (+ 1) - The latitude where Sun is directly overhead at solar noon \newline % Row Count 7 (+ 2) - Can only be in the tropics on any given day \newline % Row Count 8 (+ 1) \#\# Solar Elevation Angle (SEA) \newline % Row Count 9 (+ 1) - Angle the Sun makes with horizon at any time \newline % Row Count 10 (+ 1) - When sun is on horizon, SEA is 0º \newline % Row Count 11 (+ 1) - Halfway up into the sky, the SEA is 45º \newline % Row Count 12 (+ 1) - If sun is directly overhead, SEA is 90º \newline % Row Count 13 (+ 1) \#\# Solar Noon Angle (SNA) \newline % Row Count 14 (+ 1) - Angle the Sun makes with the horizon at solar noon \newline % Row Count 16 (+ 2) - Sun will be at its highest point in the sky at solar noon on any given day \newline % Row Count 18 (+ 2) - Sun will be at absolute highest point in the sky at solar noon on the first day of summer \newline % Row Count 20 (+ 2) - Sun will be at its absolute lowest point in the sky at solar noon on the first day of winter \newline % Row Count 22 (+ 2) \#\# Procedure to Finding the Solar Noon Angle \newline % Row Count 23 (+ 1) 1. Where is the Solar Declination \newline % Row Count 24 (+ 1) 2. Calculate latitude difference to the SD \newline % Row Count 25 (+ 1) 3. Subtract this difference between 90º% Row Count 26 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 3}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{\#\# Temperature Definitions \newline % Row Count 1 (+ 1) - Daily Mean \newline % Row Count 2 (+ 1) - Average of the 24 hourly-temperature readings \newline % Row Count 4 (+ 2) - Add high | low and divide by two \newline % Row Count 5 (+ 1) - Daily Temperature Range \newline % Row Count 6 (+ 1) - Difference between high and low \newline % Row Count 7 (+ 1) - Monthly Mean \newline % Row Count 8 (+ 1) - Average of daily means for the month \newline % Row Count 9 (+ 1) - Annual Mean \newline % Row Count 10 (+ 1) - Average of the 12 monthly-means for the year \newline % Row Count 12 (+ 2) - Annual Temperature Range \newline % Row Count 13 (+ 1) - Difference between highest and lowest monthly mean \newline % Row Count 15 (+ 2) \#\# Controls of Temperature \newline % Row Count 16 (+ 1) Anything that determines the temperature of a location is called "Control of Temperature" \newline % Row Count 18 (+ 2) - {\bf{\#1 Control:}} Amount of Solar Radiation received \newline % Row Count 20 (+ 2) - Solar Angle \newline % Row Count 21 (+ 1) - Length of daylight \newline % Row Count 22 (+ 1) - Latitude determines solar angle and day length \newline % Row Count 23 (+ 1) - Areas on same latitude have the same solar angles and number of daylight hours on any given day \newline % Row Count 26 (+ 3) - So latitude is no. 1 control \newline % Row Count 27 (+ 1) - Differential heating of land and water \newline % Row Count 28 (+ 1) - Land and water do not heat up/cool down at the same rate \newline % Row Count 30 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 3 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Water requires 3-5x as much energy than land to heat up to the same temperature \newline % Row Count 2 (+ 2) - Geographic position \newline % Row Count 3 (+ 1) - If prevailing winds blow from sea to land (windward coast), temperatures will not change much \newline % Row Count 5 (+ 2) - Tend to have a small annual temperature range \newline % Row Count 7 (+ 2) - If prevailing winds blow from land to sea (leeward coast), temperatures will fluctuate much more \newline % Row Count 10 (+ 3) - Tend to have a larger annual temperature range \newline % Row Count 12 (+ 2) - Ocean currents \newline % Row Count 13 (+ 1) - Warm Gulf Stream \newline % Row Count 14 (+ 1) - "River" of warm water transports heat to northern latitudes \newline % Row Count 16 (+ 2) - Western Europe is much milder than it should be \newline % Row Count 18 (+ 2) - Effects of warm ocean currents \newline % Row Count 19 (+ 1) - Palm Trees in England and Ireland \newline % Row Count 20 (+ 1) - Effects of Cold/Warm Ocean Currents \newline % Row Count 21 (+ 1) - Poleward currents bring warmer conditions \newline % Row Count 23 (+ 2) - Equatorward current bring cooler conditions \newline % Row Count 25 (+ 2) - Another Effect of Cold Ocean Currents \newline % Row Count 26 (+ 1) - Land is pretty dry \newline % Row Count 27 (+ 1) - Ex. Atacama Desert is the driest place on Earth due to the cold Peru Ocean Current \newline % Row Count 29 (+ 2) - Elevation \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 3 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Temperatures usually decrease with altitude in the troposphere \newline % Row Count 2 (+ 2) - Atmosphere is mostly transparent to solar radiation but the ground absorbs almost all radiation that hits it \newline % Row Count 5 (+ 3) - Air in contact with ground (conduction) heats up the most \newline % Row Count 7 (+ 2) - Atmosphere is heated from bottom up \newline % Row Count 8 (+ 1) - Cloud cover \newline % Row Count 9 (+ 1) - Clouds (or water vapor) lower surface temperatures during the day \newline % Row Count 11 (+ 2) - Clouds (or water vapor) increase surface temperatures at night \newline % Row Count 13 (+ 2) - Albedo variations \newline % Row Count 14 (+ 1) - High albedo reduces surface temperature \newline % Row Count 15 (+ 1) - Low albedo increases surface temperature \newline % Row Count 16 (+ 1) \#\# Consequences of Being Next to Large Body of Water \newline % Row Count 18 (+ 2) - Inland Winnipeg and Coastal Vancouver \newline % Row Count 19 (+ 1) - Cities are located at a similar latitude \newline % Row Count 20 (+ 1) - Vancouver has a milder climate \newline % Row Count 21 (+ 1) - Temperatures in S. hemisphere do not fluctuate as much \newline % Row Count 23 (+ 2) - S. Hemisphere is the "water hemisphere" \newline % Row Count 24 (+ 1) - Water moderates temperatures \newline % Row Count 25 (+ 1) \#\# Minimum and Maximum Temperatures of the Day/Year \newline % Row Count 27 (+ 2) - Delay in reaching high temperature: Lag of the Maximum \newline % Row Count 29 (+ 2) - Also applies to the seasons \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 3 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{\#\# Urban Heat Island Effect \newline % Row Count 1 (+ 1) - Interior sections of cities tend to be warmer than surrounding rural areas \newline % Row Count 3 (+ 2) \#\# Temperature Measurements \newline % Row Count 4 (+ 1) - Mechanical thermometer \newline % Row Count 5 (+ 1) - Liquid in glass | expands when heated, contracts when cooled \newline % Row Count 7 (+ 2) - Maximum thermometer - mercury \newline % Row Count 8 (+ 1) - Minimum thermometer - alcohol \newline % Row Count 9 (+ 1) - Thermograph \newline % Row Count 10 (+ 1) - Two metals in the strip will expand/contract differently depending on the temperature \newline % Row Count 12 (+ 2) - Electrical thermometers \newline % Row Count 13 (+ 1) - Thermistor measures the resistance to electric current \newline % Row Count 15 (+ 2) - Provides accurate temperature reading even when temperature changes quickly (radiosondes) \newline % Row Count 17 (+ 2) - Instrument shelters \newline % Row Count 18 (+ 1) - White box \newline % Row Count 19 (+ 1) - Louvered sides (slits in the housing unit) \newline % Row Count 20 (+ 1) - Over grass and away from buildings \newline % Row Count 21 (+ 1) - 1/5m (5 feet) above ground \newline % Row Count 22 (+ 1) \#\# Crop Protection Against the Cold \newline % Row Count 23 (+ 1) - Frost/Freeze Prevention \newline % Row Count 24 (+ 1) - Water sprinklers add heat from the latent heat of fusion when the water freezes \newline % Row Count 26 (+ 2) - Air mixing uses wind machines to mix warm and cool air \newline % Row Count 28 (+ 2) - Orchard heaters produce the most successful results, but fuel cost and pollution can be significant \newline % Row Count 31 (+ 3) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 3 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{\#\# Heat Stress and Wind Chill: Indices of Human Discomfort \newline % Row Count 2 (+ 2) - Heat Stress Index: Temperature the body perceives when you include effects of humidity \newline % Row Count 4 (+ 2) - Evaporation of sweat is reduced when humidity is high \newline % Row Count 6 (+ 2) - Apparent Temperature: temperature a person perceives \newline % Row Count 8 (+ 2) - Wind Chill Index: Temperature the body perceives when you include effects of wind \newline % Row Count 10 (+ 2) - Cold, dry air will evaporate moisture from the body \newline % Row Count 12 (+ 2) - Wind will blow away isolating air layer that surrounds the body \newline % Row Count 14 (+ 2) \#\# Temperature and the Economy \newline % Row Count 15 (+ 1) - Heating Degree Days \newline % Row Count 16 (+ 1) - Gives a sense of how often one needs to heat a building \newline % Row Count 18 (+ 2) - Assumption: Heating not required when daily mean temperature is ≥65ºF, then there is zero heating degree days \newline % Row Count 21 (+ 3) - For each degree the mean temperature \textless{} 65ºF, this is counted as one Heating Degree Day \newline % Row Count 23 (+ 2) - Cooling Degree Days \newline % Row Count 24 (+ 1) - Cooling not required when daily mean temperature is 65ºF or lower \newline % Row Count 26 (+ 2) - Each degree of temperature \textgreater{} 65ºF is counted as one Cooling Degree Day \newline % Row Count 28 (+ 2) - Heating/Cooling Degree Days and Electric Bills \newline % Row Count 30 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 3 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Heating bill correlates with heating degree days \newline % Row Count 2 (+ 2) - Growing Degree Days \newline % Row Count 3 (+ 1) - A way to determine if a crop can be successfully grown in any given area \newline % Row Count 5 (+ 2) - Assumes a BASE temperature for any given crop \newline % Row Count 7 (+ 2) - If daily mean is below the base, the plant goes dormant \newline % Row Count 9 (+ 2) - The difference between this BASE temperature and the daily mean temperature is a Growing Degree Day \newline % Row Count 12 (+ 3) - Some crops go dormant if daily mean is too high \newline % Row Count 14 (+ 2) - If daily mean \textgreater{} 86ºF, many plants stress out, go dormant \newline % Row Count 16 (+ 2) - In this event, the number of GDD is set at zero% Row Count 18 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{\#\# Water: A Unique Substance \newline % Row Count 1 (+ 1) \#\#\# Hydrogen Bonding \newline % Row Count 2 (+ 1) - The attractive force between \$H\_2O\$ molecules \newline % Row Count 3 (+ 1) - Hydrogen side of \$H\_2O\$ is "+" charged | Oxygen side is "-" charged \newline % Row Count 5 (+ 2) - + Hydrogen side attracted to oxygen side of other \$H\_2O\$ molecules \newline % Row Count 7 (+ 2) \#\#\# Formation of Ice \newline % Row Count 8 (+ 1) - When it's cold, \$H\_2O\$ molecules cannot break their bonds \newline % Row Count 10 (+ 2) - Remain fixed in a crystalline structure, ice \newline % Row Count 11 (+ 1) - Lowest kinetic energy state \newline % Row Count 12 (+ 1) \#\#\# Liquid Water \newline % Row Count 13 (+ 1) - When it's warmer, \$H\_2O\$ molecules break bonds temporarily \newline % Row Count 15 (+ 2) - Flow over each other but remain connected, liquid water \newline % Row Count 17 (+ 2) - Higher kinetic energy state \newline % Row Count 18 (+ 1) \#\#\# Water Vapor \newline % Row Count 19 (+ 1) - When it's very warm, \$H\_2O\$ molecules break bonds completely \newline % Row Count 21 (+ 2) - Molecules scatter in random directions, gaseous water = water vapor \newline % Row Count 23 (+ 2) - Highest kinetic energy state \newline % Row Count 24 (+ 1) \#\#\# Ice-Water-Water Vapor \newline % Row Count 25 (+ 1) - When water absorbs or releases internal energy, it can change phase \newline % Row Count 27 (+ 2) \#\# Heat Energy \newline % Row Count 28 (+ 1) One calorie of heat energy is required to raise 1 gram of water 1ºC \newline % Row Count 30 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{\#\# Water: Changing Phases \newline % Row Count 1 (+ 1) - Latent Heat of Melting: 80 calories \newline % Row Count 2 (+ 1) - 80 calories of heat absorbed by 1g of ice melts into 1g of water \newline % Row Count 4 (+ 2) - No temperature change in the ice, but surrounding air gets colder \newline % Row Count 6 (+ 2) - Latent Heat of Fusion: 80 calories \newline % Row Count 7 (+ 1) - 80 calories of heat released by 1g of liquid water freezes to 1g of ice \newline % Row Count 9 (+ 2) - No temperature change in the water but surrounding air does heat up \newline % Row Count 11 (+ 2) - Latent Heat of Vaporization: between 540 and 600 calories \newline % Row Count 13 (+ 2) - 540 to 600 calories absorbed by 1g of liquid water evaporate to 1g water vapor \newline % Row Count 15 (+ 2) - Heat is taken from surrounding air resulting in decrease air temperature \newline % Row Count 17 (+ 2) - Latent Heat of Condensation: between 540 and 600 calories \newline % Row Count 19 (+ 2) - 540 to 600 calories released by 1g water vapor condenses to 1g liquid water \newline % Row Count 21 (+ 2) - Heat is added to the surrounding air resulting in a temperature increase \newline % Row Count 23 (+ 2) - Latent Heat of Sublimation: about 680 calories \newline % Row Count 24 (+ 1) - 680 calories of heat absorbed by 1g of ice to sublime to 1g of water vapor \newline % Row Count 26 (+ 2) - Heat removed from surrounding air greatly cools the air around the ice \newline % Row Count 28 (+ 2) - Latent Heat of Deposition: about 680 calories \newline % Row Count 29 (+ 1) - 680 calories of heat released by 1g of water vapor deposits to 1g of ice \newline % Row Count 31 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Heat added to the environment greatly warms the air around the ice \newline % Row Count 2 (+ 2) \#\# Measuring Water Vapor \newline % Row Count 3 (+ 1) - Mixing Ratio \newline % Row Count 4 (+ 1) - Mass of water vapor/mass of dry air it is in \newline % Row Count 6 (+ 2) - Water vapor measured in grams \newline % Row Count 7 (+ 1) - Dry air measured in kg \newline % Row Count 8 (+ 1) - Actual mass of water vapor in the air \newline % Row Count 9 (+ 1) - Saturation Mixing Ratio \newline % Row Count 10 (+ 1) - Max amount of water vapor allowed in the air (mostly determined by temperature) \newline % Row Count 12 (+ 2) - Vapor Pressure \newline % Row Count 13 (+ 1) - Pressure exerted by water vapor \newline % Row Count 14 (+ 1) - Total air pressure = sum of pressure from each gas \newline % Row Count 16 (+ 2) - The more water vapor in the air, the greater its contribution to the total air pressure \newline % Row Count 18 (+ 2) - Relative Humidity \newline % Row Count 19 (+ 1) - Mass of water vapor/mass of water vapor allowed to be in the air \newline % Row Count 21 (+ 2) - RH=mixing ratio/saturation mixing ratio \newline % Row Count 22 (+ 1) - RH=vapor pressure/saturation vapor pressure \newline % Row Count 23 (+ 1) - Relative humidity can be misleading \newline % Row Count 24 (+ 1) - Does not tell you how much water vapor is in the air unless you know the temperature of the air \newline % Row Count 27 (+ 3) - RH does tell you how close you are to saturating the air \newline % Row Count 29 (+ 2) - When air is saturated, condensation occurs \newline % Row Count 31 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - The lower the RH, the faster water evaporates \newline % Row Count 2 (+ 2) - Watering lawn in the morning is more effective than watering in the afternoon \newline % Row Count 4 (+ 2) - RH can be over 100\% but not for long (supersaturation) \newline % Row Count 6 (+ 2) - Violent updrafts in thunderstorms can supersaturate \newline % Row Count 8 (+ 2) - Dew Point Temperature (Td) \newline % Row Count 9 (+ 1) - Temperature at which saturation occurs \newline % Row Count 10 (+ 1) - Better way of measuring actual water vapor content \newline % Row Count 12 (+ 2) - Absolute Humidity \newline % Row Count 13 (+ 1) - Specific Humidity \newline % Row Count 14 (+ 1) \#\#\# Relationship Between T, Td, and RH \newline % Row Count 15 (+ 1) - When T and Td are close, RH is high \newline % Row Count 16 (+ 1) - When T and Td are far apart, RH is low \newline % Row Count 17 (+ 1) \#\#\# Water Vapor Rule \newline % Row Count 18 (+ 1) - Air can only hold so much water vapor \newline % Row Count 19 (+ 1) - When it has as much water vapor as physics allow, we say the air is saturated \newline % Row Count 21 (+ 2) \#\# Saturation Vapor Pressure \newline % Row Count 22 (+ 1) - Pressure exerted by water vapor when the air is saturated with it \newline % Row Count 24 (+ 2) - Amount of water vapor allowed in air is mostly determined by temperature \newline % Row Count 26 (+ 2) - Warmer temperatures allow for more water vapor \newline % Row Count 28 (+ 2) \#\# When Air is Saturated \newline % Row Count 29 (+ 1) Some kind of Condensation (Deposition) Occurs \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- Dew forms \newline % Row Count 1 (+ 1) - Frost forms (if below freezing) \newline % Row Count 2 (+ 1) - Fog forms \newline % Row Count 3 (+ 1) - Cloud forms \newline % Row Count 4 (+ 1) \#\# Formation of Dew \newline % Row Count 5 (+ 1) Ideal Conditions \newline % Row Count 6 (+ 1) - Clear skies, light winds \newline % Row Count 7 (+ 1) - Allows for maximum radiational cooling of the ground \newline % Row Count 9 (+ 2) - Air in contact with ground cools to the dew point \newline % Row Count 11 (+ 2) - If air continues to cool below freezing, frozen dew occurs \newline % Row Count 13 (+ 2) \#\# Formation of Frost \newline % Row Count 14 (+ 1) When Deposition occurs instead of condensation \newline % Row Count 15 (+ 1) \#\# Clouds \newline % Row Count 16 (+ 1) Bringing Air to Saturation \newline % Row Count 17 (+ 1) - Cooling air is the easiest way to saturate the air \newline % Row Count 19 (+ 2) - Air always cools as it rises \newline % Row Count 20 (+ 1) \#\#\# Formation of Clouds \newline % Row Count 21 (+ 1) - Clouds result from condensation and/or deposition \newline % Row Count 23 (+ 2) - There usually needs to be condensation nuclei for it to form \newline % Row Count 25 (+ 2) - Dust, smoke, ash, salt, sulfate particles, and even bacteria \newline % Row Count 27 (+ 2) - Without these, clouds would not form and RH would need to be greater than 100\% to form \newline % Row Count 30 (+ 3) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Deposition can occur in bitterly cold air without nuclei \newline % Row Count 2 (+ 2) - Condensation or deposition will always occur when RH reaches 100\% (in this class) \newline % Row Count 4 (+ 2) \#\#\# Fog \newline % Row Count 5 (+ 1) - Cloud with base at the ground \newline % Row Count 6 (+ 1) - Forms when air temperature = dew temperature \newline % Row Count 8 (+ 2) - 4 types \newline % Row Count 9 (+ 1) 1. Radiation \newline % Row Count 10 (+ 1) 1. Ground cools rapidly and causes saturation near the ground \newline % Row Count 12 (+ 2) 2. Nocturnal inversion can prevent higher fog \newline % Row Count 14 (+ 2) 3. Clear skies, light winds, high relative humidity \newline % Row Count 16 (+ 2) 4. Also called Valley frog \newline % Row Count 17 (+ 1) 2. Advection \newline % Row Count 18 (+ 1) 1. Warm, moist air blowing horizontally(advecting) over a "cold" surface \newline % Row Count 20 (+ 2) 3. Upslope \newline % Row Count 21 (+ 1) 1. Humid air moves up a hill or mountain \newline % Row Count 23 (+ 2) 1. The upward flow causes the air to expand, cool, which can eventually reach 100\% \newline % Row Count 25 (+ 2) 4. Evaporative \newline % Row Count 26 (+ 1) - Process of Evaporation involved \newline % Row Count 27 (+ 1) - Rain falls, partially evaporates \newline % Row Count 29 (+ 2) - Adds water vapor to air, leads to saturation \newline % Row Count 31 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Evaporation also chills air, assiting in bringing air to saturation \newline % Row Count 2 (+ 2) - Precipitation Fog \newline % Row Count 3 (+ 1) - Steam Fog \newline % Row Count 4 (+ 1) - Cool dry air moves over warm surface, esp. water \newline % Row Count 6 (+ 2) - Common over lakes in autumn when lake is still warm from summer and air above it is cold and dry \newline % Row Count 9 (+ 3) \#\#\# Classification of Clouds \newline % Row Count 10 (+ 1) - Jean-Baptiste Lamarck (1802) \newline % Row Count 11 (+ 1) - Luke Howard (1803) \newline % Row Count 12 (+ 1) - Abercromby and Hildebrandsson (1887) \newline % Row Count 13 (+ 1) Clouds are classified by appearance, shape, and how high they are. \newline % Row Count 15 (+ 2) {\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{High Clouds}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}} \newline % Row Count 17 (+ 2) - Cirrus Clouds \newline % Row Count 18 (+ 1) - Composed mostly of ice crystals \newline % Row Count 19 (+ 1) - Thin due to limited water vapor \newline % Row Count 20 (+ 1) - Cirrocumulus \newline % Row Count 21 (+ 1) - Composed of mostly ice crystals but with lumps \newline % Row Count 23 (+ 2) - Cirrostratus \newline % Row Count 24 (+ 1) - Composed of mostly ice crystals and when thin, often causes a halo around sun/moon \newline % Row Count 26 (+ 2) - Can be thicker but usually, sun still partially shines through \newline % Row Count 28 (+ 2) {\bf{{\emph{}}{\bf{}}Middle Clouds}}{\bf{{\emph{}}}} \newline % Row Count 29 (+ 1) - Altocumulus \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Mostly water droplets \newline % Row Count 1 (+ 1) - Darker regions noted \newline % Row Count 2 (+ 1) - Can signal the possibility of afternoon storms \newline % Row Count 4 (+ 2) - Altostratus \newline % Row Count 5 (+ 1) - Mostly water droplets with a "frosted glass" sun appearance \newline % Row Count 7 (+ 2) - Usually does not permit shadows to be cast \newline % Row Count 8 (+ 1) {\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}Low Clouds{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}} \newline % Row Count 10 (+ 2) - Stratus \newline % Row Count 11 (+ 1) - Layer of low clouds covering the sky \newline % Row Count 12 (+ 1) - Often seen after fog "lifts" \newline % Row Count 13 (+ 1) - Can have mist or drizzle \newline % Row Count 14 (+ 1) - Nimbostratus \newline % Row Count 15 (+ 1) - Light to moderate rain or snow \newline % Row Count 16 (+ 1) - Stratocumulus \newline % Row Count 17 (+ 1) - Lumpy clouds that appear in rows with some separation \newline % Row Count 19 (+ 2) - Lower than altocumulus with larger cloud elements \newline % Row Count 21 (+ 2) {\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}Clouds of Vertical Development{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}} \newline % Row Count 25 (+ 4) - Cumulus \newline % Row Count 26 (+ 1) - Cauliflower or cotton ball clouds \newline % Row Count 27 (+ 1) - Rising air below clouds, sinking air between clouds \newline % Row Count 29 (+ 2) - Cumulus Humilis \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Fair weather clouds \newline % Row Count 1 (+ 1) - Humble clouds that do not threaten to build into storms \newline % Row Count 3 (+ 2) - Cumulus Congestus \newline % Row Count 4 (+ 1) - May develop into thunderstorms \newline % Row Count 5 (+ 1) - Cumulonimbus \newline % Row Count 6 (+ 1) - Most intense rainmaker \newline % Row Count 7 (+ 1) - Overshooting top \newline % Row Count 8 (+ 1) - When the cloud punches through the stratosphere \newline % Row Count 10 (+ 2) {\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{Special Latin Descriptive Terms}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}} \newline % Row Count 14 (+ 4) - Cloud Varieties \newline % Row Count 15 (+ 1) - Uncinus \newline % Row Count 16 (+ 1) - Hooked shaped, often appear before stormy weather moves in \newline % Row Count 18 (+ 2) - Cirrus uncinus \newline % Row Count 19 (+ 1) - Fractus \newline % Row Count 20 (+ 1) - Stratus or cumulus clouds that appear broken \newline % Row Count 22 (+ 2) - Cumulus fractus better known as scud clouds \newline % Row Count 24 (+ 2) - Mammatus \newline % Row Count 25 (+ 1) - Udder-shaped protuberances often associated with the underside of a cumulonimbus anvil cloud \newline % Row Count 28 (+ 3) - Only cloud that forms in sinking air \newline % Row Count 29 (+ 1) {\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}Unusual Clouds}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}}} \newline % Row Count 31 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- Lentiular \newline % Row Count 1 (+ 1) - Lens-shaped and common over mountains and downwind of high terrain \newline % Row Count 3 (+ 2) - Pileus \newline % Row Count 4 (+ 1) - Cap clouds \newline % Row Count 5 (+ 1) - Form when moist air is pushed up under a develeoping cumulus cloud \newline % Row Count 7 (+ 2) - Banner Cloud \newline % Row Count 8 (+ 1) - Forms downwind of an isolated mountain peak \newline % Row Count 9 (+ 1) - Asperitas Clouds \newline % Row Count 10 (+ 1) - Often forming near precipitation-bearing clouds \newline % Row Count 12 (+ 2) - Undulating up and down like ocean waves \newline % Row Count 13 (+ 1) {\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{*Super-high Clouds}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}{\bf{}}}}{\bf{{\emph{}}}}* \newline % Row Count 15 (+ 2) - Nacreous \newline % Row Count 16 (+ 1) - Stratophere \newline % Row Count 17 (+ 1) - Noctilucent \newline % Row Count 18 (+ 1) - Mesosphere \newline % Row Count 19 (+ 1) Reminder: Rising air cools, temperature drops to dew point, condenses \newline % Row Count 21 (+ 2) - Excess water vapor condenses into tiny droplets \newline % Row Count 22 (+ 1) - Excess water vapor used up very quickly \newline % Row Count 23 (+ 1) - This results in Billions of teeny tiny water droplets whose radii are 20 microns or less \newline % Row Count 25 (+ 2) \#\# Observing Clouds from Spage \newline % Row Count 26 (+ 1) - Polar orbiting satellite \newline % Row Count 27 (+ 1) - Geostationary satellite \newline % Row Count 28 (+ 1) - Infrared imagery provides extra detail \newline % Row Count 29 (+ 1) - Darker shades of grey indicate warm clouds, thus low altitude \newline % Row Count 31 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ - Brighter grays and whites indicate cold clouds thus high altitude \newline % Row Count 2 (+ 2) \#\# Water Vapor Imagery \newline % Row Count 3 (+ 1) - Shows air motions (wind) even in cloud-free areas \newline % Row Count 5 (+ 2) - Detects water vapor at the 6.9µm wavelength \newline % Row Count 7 (+ 2) - Colorized to differentiate between dry and moist air \newline % Row Count 9 (+ 2) \#\# Two Main Types of Nuclei \newline % Row Count 10 (+ 1) - Condensation Nuclei \newline % Row Count 11 (+ 1) - Hygroscopic (water-seeking) nuclei \newline % Row Count 12 (+ 1) - Most effective condensation nuclei \newline % Row Count 13 (+ 1) - Salt crystals are the best \newline % Row Count 14 (+ 1) - Only RH \textasciitilde{}75\% required \newline % Row Count 15 (+ 1) - Hydrophobic (water-repelling) nuclei \newline % Row Count 16 (+ 1) - Least effective condensatioin nuclei \newline % Row Count 17 (+ 1) - Waxes and oil droplets discourage but do not totally prevent condensation \newline % Row Count 19 (+ 2) - RH must be 100\% or even temporarily higher% Row Count 21 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}