Meteorology Chapter 1-4 Cheat Sheet by chanhmuoi via cheatography.com/198300/cs/41938/

Chapter 1

Scientific Method

- Make observations
- Make a hypothesis
- Has to be tested
- Make prediction assuming hypothesis is true
- Carry out experiments
- Mathematics is the tool to understand and predict the natural world
- Scientific Method and Meteorology
- Atmosphere obeys laws of physics and chemistry - Instruments allow us to
- quantify the state of the
- atmosphere
- Thermometer
- Hygrometer
- How much humidity/moisture in air
- Barometer
- Air pressure
- Anemometer
- Wind speed/wind direction
- Mathematics can project
- current conditions into the future - Uses computer models to help

with calculating Weather and Climate

- Weather describes state of the atmosphere at any given time
- Temperature
- Air Pressure
- Humidity
- Cloud Cover
- Precipitation
- Visibility
- WInd Velocity

By chanhmuoi

Chapter 1 (cont)	Chapter 1 (cont)
- Climate describes average	- These radiosondes provide 3D
atmospheric conditions over at	view of the atmosphere
least 30 years	- Numerical Weather Prediction
- Includes extremes	(NWP)
- The frequency of extremes	- Solving the mathematical laws
help differentiate between	of physics/chemistry at high
locations with similar averages	speeds
Meteorology	Remote Sensing of the
- Meteorologica	Atmosphere
- Book on natural philosophy by	- Weather Radar (1940s)
Aristotle in 340 BC	- Detects precipitation targets
- How meteorology got its name	from over 100 miles away
- Study of the atmosphere and	- Doppler Weather Radar
its phenomena	(1990s)
- Began with the invention of	- Detects precipitation targets
weather instruments (1450	and their motion
1650)	- "Sees" the wind
- Quantified the atmosphere	- Dual Pole Doppler Weather
- Allows for the prediction of	Radar (2000s)
what the atmosphere will do	- Distinguishes between rain,
- Telegraph (1843)	snow, hail, and bugs
- Allowed for the transmission of	- Weather Satellites (1960s)
current weather conditions	- Reveal weather features
across vast areas	produced by cloud patterns
- Weather Map Analyses (1869)	- Can supply NWP with data
- Visual snapshot of current	from every location on Earth
state of the atmosphere	- Most Common Type of
- Understanding of Air Masses	Satellite
adn fronts (1920)	- Geostationary
- Key weather features that drive	- Orbits the Earth at the same
world weather patterns	speed the Earth spins
- Daily weather ballon launches	- GOES 16 and 17 Satellites
(1940s)	- Best View of the US

Chapter 1 (cont)

- Centered over the Equator (0° Latitude) and 75° W | 137°W Longitude
- 22.300 Miles

Latitude

- the angle made between center of Earth and a point on surface using the Equator as the reference line
- North Pole = 90° N Latitude |
- South Pole = 90°S Latitude - Most of the US is between
- 30°N and 50°N Latitude

Longitude

- the angle made between center of Earth and a point on surface using the Prime
- Meridian as the reference line
- Runs from N Pole to S Pole
- through Greenwich, England
- Most of the US lies between
- 70°W and 125°W Longitude

Most Common Type of Storm System

- Middle-Latitude Cyclonic Storm System
- Extratropical Cyclone
- Cyclone=area of low pressure
- Anticyclones=are of high pressure

Depiction of Winds

- Wind is defined from the direction it is blowing

Not published yet. Last updated 4th January, 2024. Page 1 of 11.

Sponsored by Readable.com Measure your website readability!

Meteorology Chapter 1-4 Cheat Sheet by chanhmuoi via cheatography.com/198300/cs/41938/

Chapter 1 (cont)

- Represented by a line - wind

barb - drawn parallel to wind

- Points in direction from which the wind is blowing

- Speed is represented by wind flags
- Full flag = 10 knots

- Half flag = 5 knots

Wind Flow

- Counterclockwise and inward around lows
- Clockwise and outward around highs

In Southern hemisphere...

- Clockwise/inward around lows
- Counterclockwise/outward around highs
- Wind does not cycle around the equator
- No hurricanes but tornados can still happen

Vertical Wind Flow Around High and Lows

- Air converges and rises in the center of low pressure (cyclone)

- Clouds/precipitation
- Air diverges and sinks in the center of high pressure (anticyclone)

- Clear skies

- Weather Fronts
- Cold front
- Boundary that separates colder
- air from warmer air
- When colder air advances and

replaces warmer air

By chanhmuoi

Chapter 1 (cont)

- Warm front
- Boundary that separates colder
- air from warmer air
- When warmer air advances
- and replaces colder air
- Occluded front
- When cold front merges with warm front
- All fronts are usually but not always associated with rising air, clouds, and precipitation Impacts of Weather and Climate
- Weather dictates the clothes
- we wear on any given day
- Climate dictates the clothes we
- have in our wardrobe
- Climate dictates the type of crops we can grow
- Weather dictates whether the
- crops can be harvested

When Weather is Not What it Seems

- Wind Chill
- Body perceives a lower
- temperature than it really is
- Hypothermia
- Frostbite
- Heat Index
- Body perceives a higher
- temperature than it really is
- Hyperthermia
- Heat Exhaustion or Heatstroke

Page 2 of 11.

Other Biological Impacts

Chapter 1 (cont)

- Rapid pressure falls/rising humidity
- Can induce expansion of joints and cause joint pain
- Wind flowing downhill heats up
- Chinook winds/ Santa Ana
- Incidence of depression increases

Economical Impacts of Weather

- Warm winters = lower heating
- bills
- Beware of unusual winter
- severe weather outbreaks - Cold winters = higher heating bills
- Severe Artic air cold snaps can threaten human lives/infrastructure damage/massive crop losses
- Heat Waves and Drought
- Crops losses
- Wildfires increase
- #1 in weather-related fatalities

Climate Change Bringing More Extremes

- Heat waves and drought increasing
- Flooding events increasing
- Hurricane intensity increasing
- Other Weather Hazards
- Severe Thunderstorms
- 50 knot (58 mph) winds
- 1-in hail
- Tornado
- Sponsored by Readable.com Measure your website readability!

Not published yet. Last updated 4th January, 2024.

Chapter 1 (cont)

- It has to fulfill one condition to be considered
- Flash Flooding
- Slow-moving thunderstorms
- "Training" storms
- Downburst winds
- Macroburst- greater than 4 km
- (2.5 mi) in diameter
- Microburst less than 4 km in diameter

- Professionaly trained, college

degree in atmospheric science

Weather Business is Expanding

Fundamentals of Meteorology

The atmosphere is a mixture of

- Water Vapor (highly variable)

- Carbon Dioxide (generally

- Both produce Wind Shear
- Change in wind speed/direction over short distance

Who Studies This?

- Meteorologist

- Weathercaster - Good communicator of

weather information

- App Development

- Forensic services

dases

- Nitrogen

- Oxygen

increasing)

- Argon

- Private Meteorological

Meteorology Chapter 1-4 Cheat Sheet by chanhmuoi via cheatography.com/198300/cs/41938/

Chapter 1 (cont)

Most of the gases are near the surface

Air gets "thinner" as you go up
99% of atmosphere is within 19
mi of teh surface

- Blocks deadly solar radiation from reaching the surface

The First Atmosphere

- 4.6 BYA the atmosphere was mostly hydrogen and helium

- Some methane and ammonia thrown in

- Hydrogen and helium escaped into space

- Earth's gravity not strong enough

The Second Atmosphere

- Outgassing from Earth's hot interior (volcanoes)

- Mostly water vapor (80%), carbon dioxide (10%), and some nitrogen

- Water vapor "condensed" into clouds with rain lasting 1000s of years

- Combined with asteroid/comet collisions that formed the oceans *Water Vapor Levels in*

- Atmosphere Drop
- Most of the water vapor converted to liquid water
- Atmosphere now just a few % water vapor
- CO2 Levels Drop
- CO2 readily dissolves in water

Chapter 1 (cont)

- Combined with chemicals in the ocean to form limestone
- N2 Levels Increase
- Nitrogen is not very chemically reactive
- Once in the atmosphere, tends to stay
- 02

- Solar radiation splits water vapor into hydrogen and oxygen

- Hydrogen escaped into space
- Oxygen left behind
- 2.4 BYA, something wonderful happens
- Cyanobacteria (blue-green algae) produce O2 from photosynthesis
- Earth begins to cool
- O2 combines with O to form O3 (ozone)
- O3 in upper atmosphere absorbs incoming radiation
- cooling the Earth - Methane breaks down in the
- presence of O2
- Warming effect of methane weakens
- Earth becomes very cold
- Cyanobacteria proliferate around the world removing CO2
- from atmosphere
 Warming effect of carbon
- dioxide weakens First Mass Extinction
- -Irst Mass Exunction
- Earth gets covered in ice
 Frigid Earth no longer
 supporting life
 No O2 being produced

Chapter 1 (cont)

- O2 is highly reactive/combines with other elements to form rocks
- O2 levels drop worldwide Life Gets a Second Chance
- -- Outgassing increases water vapor/carbon dioxide (volcanoes)
- H2O and CO2 are warming gases
- Takes over a billion years for new photosynthesizing life to reappear
- After another 1/2 billion years, O2 levels are where they are today

Water Vapor

- 0% to 4% of the atmosphere
- Always invisible
- Become visible when vapor molecules "jump" on each other to form droplets or ice crystals
 Condensation form droplets
- Deposition form ice crystals
- Evaporation is when liquid turns to gas
- Water is only substance that can exist in all 3 phases at normal temperature/pressure **Characteristics**
- Greenhouse Gas
- Very effective at absorbing outgoing radiation emitted by Earth

Chapter 1 (cont)

- Re-emits some of this energy back keeping the Earth warmer Carbon Dioxide
- Greenhouse Gas
- Comes from the decay of vegetation
- Volcanic eruptions
- Burning of coal, oil, natural gas (fossil fuels)
- Removed by photosynthesis of land and ocean plants
- CO2 gets stored in roots,
- branches, and leaves
- Chemical weathering of rocks
- CO2 dissolves in rainwater
- Forms carbonic acid
- Combines with minerals in
- rocks and becomes part of the rock
- Dissolves in Ocean water
- Used by sea critters to make shells
- Eventually sinks to bottom of the sea

Vertical Structure of the Atmosphere

Air is compressible

- Gravity pulls most -but not all-
- air molecules near the surface
- Air Density = # of air molecules in a given volume
- Mass/volume
- Air Density and Air Pressure

C

By chanhmuoi

Not published yet. Last updated 4th January, 2024. Page 3 of 11. Sponsored by Readable.com Measure your website readability! https://readable.com

Meteorology Chapter 1-4 Cheat Sheet by chanhmuoi via cheatography.com/198300/cs/41938/

Chapter 1 (cont)

- Force exerted by air molecules against a surface
- Same thing as the weight of
- the air above you
- At sea level, air weighs 14.7 lbs per square inch

Measuring Air Pressure

- 14.7 lbs/in2
- 1013.25 millibars (mb)
- 29.92 in Hg

Atmosphere is Very Thin

- Half of the air molecules is
- below 5.5 km (18,000 ft)
- 99.9% is below 50 km (160,000 ft)

Layers of the Atmosphere

- Atmospheric layers are defined by how the temperature changes with height
- Lapse Rate= rate at which temperature decreases with height
- In lower atmosphere, lapse rate
- = 6.5°C per km (3.6°F per 1000 ft)
- Temperature can INCREASE with height
- This is called temperature inversion
- Lapse rate is negative
- Troposphere
- Stratosphere
- Mesosphere
- Thermosphere
- lonosphere
- Lower part of the Thermo-
- sphere

By chanhmuoi

Chapter 1 (cont)

- Solar energy strips electrons from N2 and O2 causing them to glow
- Northern and Southern Lights
- Aurora Borealis N. Lights
- Aurora Australis S. Lights

Chapter 2

- Energy

- The ability to do "work": when an object moves
- Kinetic Energy
- Energy of motion- translati-
- onal, rotational and vibrational
- Potential Energy
- Energy that can convert to kinetic energy
- Water that is behind a dam
- Object suspended in the sky
- Temperature
- Average kinetic energy of atoms in a substance
- Some move fast, others not so
- fast
- Average motion = temperature
 When molecules move, rotate, and/or vibrate, we say that the object has a temperature
- When air molecules move slowly, they crowd together
 It is cold and air is dense

Chapter 2 (cont)

- When air molecules move quickly, they spread out
- We say it is warm and the air is less dense
- Internal Energy (Heat energy)
- The total kinetic and potential energy of all atoms or molecules
 Heat
- Heat is the transfer of energy from warmer objects to cooler ones
- The bigger the temperature difference, the faster the energy transfer
- Know how to convert temperature scales
- ## Temperature Measurements
- Important Temperature ValuesIce point
- Ice melts, water freezes
- 32°F, 0°C, 273.15K
- Steam point
- Water boils
- 212°F, 100°C, 373.15 K ## Types of Heat Energy
- Sensible Heat
- Heat energy that can be absorbed or released by a substance that results in a change of temperature
- Latent Heat

Chapter 2 (cont)

- Heat energy that is absorbed or released by a substance when the substance undergoes a phase change
- Temperature of substance does not change
- Let ice at 32°F absorb heat energy
- Ice melts, but its temp remains at $32^{\circ}F$
- Only after the ice completely melts will the water warm up
- If water freezes, it releases the same heat it took to cause it to melt in the first place but water temp does not change
- The surrounding air does warm
- How does heat energy get
- transferred?
- Conduction
- Heat transfer by contact of one substance with another
- Energy gets transferred from one molecule to the next
- Some materials transfer heat better than others
- Metals are good conductors
- Fiberglass, cork, wood, cloth,
- glass, water are poor conductors
- Air is a poor conductor of heat
- Heat (Thermal) Conductivity

Not published yet. Last updated 4th January, 2024. Page 4 of 11.

Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/chanhmuoi

Meteorology Chapter 1-4 Cheat Sheet by chanhmuoi via cheatography.com/198300/cs/41938/

Chapter 2 (cont) Chapter 2 (cont) Chapter 2 (cont) Chapter 2 (cont) - Measure of how well a - Energy is carried by photon - λ _max = 2897/T (answer is in - Longwave is greater than 1.4 particles defined by their substance transfers heat energy µm) um ## Why Temperature Decreases wavelength - T must be expressed in Kelvin - Some will eat both or neither - nm=nanometer= billionth of a - Stefan-Boltzmann and Wien's - Air is mostly transparent to with Height - Atmosphere is mostly "transmeter I aw incoming solar radiation parent" to incoming sunlight - µm=micrometer or micron= - Only valid if object is a - Air is not transparent to - Sun does not heat air directly millionth of a meter blackbody object outgoing terrestrial radiation - Atmosphere can be heated by ## Radiation Laws - An object that is a perfect - Some gases absorb Earth's conduction - Facts absorber and perfect emitter of outgoing radiation and then - Ground absorbs sunlight - All objects above Absolute radiation reemit some of it back to the - Air in contact with ground gets Zero radiate (emit) energy at - Absorbs all radiation that surface heated ALL wavelengths strikes it and then emits max ## Main Greenhouse Gases - Heat energy does not get - 0K = -273.15°C= -459.67°F possible radiation - Water Vapor conducted to higher altitudes - Carbon Dioxide - Even in interstellar space, the - Absorption and Emission temperature is between 2.7K - If an object absorbs radiation, it - Methane very well ## How Does Heat Energy Get must also emit radiation - Nitrous Oxide and 5K - Ozone Transferred? - Total Radiation emitted = Sum - If absorption is greater than - Convection of energy emitted from every emission, object heats up ### Benefit of the Greenhouse - Heat transferred due to the wavelength - If absorption is less than Effect movement of a substance from - Total Energy emitted by every emission, object cools down - Average temperature of the one place to another square meter of an object is - If absorption = emission, Earth is 59^aF - Much more efficient than given by the Stefan-Boltzmann object's temperature remains the - Without greenhouse gases, it would be 0°F conduction Law same - E=o x T⁴ (results is in Watts per - Moving heat energy vertically - Radiative Equilibrium Temper-## What Else Happens to square meter, W/m2 or W m^-2 and horizontally Radiation When it Enters the ature - Convection - vertical air - Watts=Joules per second, J/s - Absorption Atmosphere? motions, also called thermals or Js^-1 - Gas molecules are picky about - Transmission - Advection - horizontal air - Temperature has to be in which type of radiation they will - Radiation passing through air motions Kelvins molecules without interacting absorb - o is constant variable - Selective Absorbers - Radiation (Electromagnetic with any of them Radiation or Radiant Energy) - Hot objects emit more radiation - Some will only eat shortwave - About 55% of incoming solar - The only heat transfer possible than cooler objects radiation is transmitted radiation in a vacuum - There is one wavelength - Shortwave is less than 1.4µm - Reflection - Radiation that bounces off an (λ_max) that an object will emit - Can also transfer heat in air or - Some will only eat longwave water most of its radiation radiation object at the same angle object, - Wien's Displacement Law and it leaves at the same

By chanhmuoi

Not published yet. Last updated 4th January, 2024. Page 5 of 11. Sponsored by Readable.com Measure your website readability! https://readable.com

intensity

cheatography.com/chanhmuoi/

Meteorology Chapter 1-4 Cheat Sheet by chanhmuoi via cheatography.com/198300/cs/41938/

Chapter 2 (cont)

- Scattering

- Produces a large number of rays traveling in all different directions

- Scattered radiation is weaker than what originally hit the object - Gasses scatter solar radiation
- preferentially - Some wavelengths are scattered better

- Atmospheric gases - mostly N2 and O2 scatter blue/violet more effectively than reds/oranges

- Violet is scattered best
- Blue is at higher intensity level than violet
- Human eye detects blue better than violet

- When Sun is on horizon, light travels through a lot more atmosphere than when Sun is overhead

Quantifying Reflected Radiation

- Albedo
- Percentage of radiation

reflected by an object

- Average albedo for Earth is about 30 percent
- Average albedo for the Moon is about 7 to 12 percent

- A perfect reflector would have
- an albedo of 100%
- Saturn's moon Enceladus has an albedo of almost 100% ## What Causes Temperature

Differences?

By chanhmuoi

 Solar Radiation Intensity largely determines temperature High solar radiation intensity= tropical areas Low solar radiation intensity= sactic/antarctic area Solar Radiation Intensity= arctic/antarctic area Midday sun always high in the sky in the Tropics Midday sun never high in the sky in Arctic/Antarctic areas Summer solstice: June 21 or 22 At solar noon, sun's rays are vertical at Tropic of Cancer 23 Yertical rays at Tropic of capricorn: 23 1/2°S Latitude Stortest day Vertical rays at the equator Sun will be at its highest point in the sky at solar noon any vertical rays at the equator Sun will be at absolute highest 			
largely determines temperature21 or 22lowest point in th noon on the first- High solar radiation intensity= =tropical areas- Vertical rays at the equator - 12 hour days/nightslowest point in th noon on the first- Low solar radiation intensity = arctic/antarctic area- Wertical rays at the equator - 12 hour days/nightslowest point in th noon on the first- Solar Radiation Intensity = Power/Area- The time when the sun reaches its highest point in the sky in the Tropics- The time when the sun reaches its highest point in the sky in the Tropics- The time when the sun reaches its highest point in the sky in the Tropics2. Calculate latter the SD- Midday sun always high in the sky in the Tropics- Analfway between sunrise and sunset3. Subtract this d between 90°- Midday sun never high in the sky in Arctic/Antarctic areas ## Important Dates to Remember- The latitude where Sun is directly overhead at solar noon - Can only be in the tropics on any given day- Angle the Sun makes with horizon at any time- Math high low at two- At solar noon, sun's rays are vertical rays at Tropic of Capricom: 23 1/2°S Latitude - Shortest day- If sun is directly overhead, SEA is 90°- Monthly Mean - Average of daily month- Vertical rays at the equator - Qaturmnal equinox: September 22 or 23- Vertical rays at the equator - Auturnal equinox: September - Sun will be at absolute highest- Annual Temper - Difference betw and lowest mont - Sun will be at absolute highest	Chapter 2 (cont)	Chapter 2 (cont)	Chapter 2 (cont)
## Important Dates to Remember- Can only be in the tropics on any given day- Daily Mean - Average of the mperature reading - Average of the mperature reading - Add high low at two- Summer solstice: June 21 or 22- Angle the Sun makes with horizon at any time- Add high low at two- At solar noon, sun's rays are vertical at Tropic of Cancer 23 1/2° N Latitude- When sun is on horizon, SEA is 0°- Daily Mean - Average of the mperature reading - Add high low at two- At solar noon, sun's rays are vertical at Tropic of Cancer 23 1/2° N Latitude- When sun is on horizon, SEA is 0°- Daily Temperat two- Autumes day - Longest day- Halfway up into the sky, the SEA is 45°- Doily Temperat - Difference between low- Vertical rays at Tropic of - Vertical rays at Tropic of - Shortest day - Autumnal equinox: September 22 or 23- Mongle the Sun makes with the horizon at solar noon - Sun will be at its highest point in the sky at solar noon on any given day- Annual Temper - Difference between and lowest mont ## Controls of Temper	 Solar Radiation Intensity largely determines temperature High solar radiation intensity- tropical areas Low solar radiation intensity = arctic/antarctic area Solar Radiation Intensity = Power/Area Partly determined by height of Sun above horizon Midday sun always high in the sky in the Tropics Midday sun never high in the 	 Vernal (spring) equinox: March 21 or 22 Vertical rays at the equator 12 hour days/nights everywhere ## Solar Noon The time when the sun reaches its highest point in the sky halfway between sunrise and sunset ## Solar Declination The latitude where Sun is 	- Sun will be at its lowest point in the noon on the first ## Procedure to Solar Noon Angle 1. Where is the S ation 2. Calculate latitut the SD 3. Subtract this d between 90°
point in the sky at solar hour off	 ## Important Dates to Remember Solstices and Equinoxes Summer solstice: June 21 or 22 At solar noon, sun's rays are vertical at Tropic of Cancer 23 1/2° N Latitude Longest day WInter solstice: December 21 or 22 Vertical rays at Tropic of Capricorn: 23 1/2°S Latitude Shortest day Autumnal equinox: September 22 or 23 Vertical rays at the equator 	 Can only be in the tropics on any given day ## Solar Elevation Angle (SEA) Angle the Sun makes with horizon at any time When sun is on horizon, SEA is 0° Halfway up into the sky, the SEA is 45° If sun is directly overhead, SEA is 90° ## Solar Noon Angle (SNA) Angle the Sun makes with the horizon at solar noon Sun will be at its highest point in the sky at solar noon on any given day 	 Daily Mean Average of the mperature readir Add high low at two Daily Temperat Difference betwoor low Monthly Mean Average of daily month

Not published yet. Last updated 4th January, 2024. Page 6 of 11.

Sponsored by Readable.com Measure your website readability!

its absolute he sky at solar t day of winter Finding the le Solar Declintude difference to difference

Definitions

24 hourly-te-

ings

and divide by

ture Range

ween high and

ily means for the

- 12 monthlyear
- erature Range

ween highest thly mean emperature etermines the temperature of a location is called "Control of Temperature" - #1 Control: Amount of Solar Radiation received

Meteorology Chapter 1-4 Cheat Sheet by chanhmuoi via cheatography.com/198300/cs/41938/

Chapter 3 (cont)

- Solar Angle

- Length of daylight

- Latitude determines solar angle and day length

- Areas on same latitude have the same solar angles and number of daylight hours on any given day

- So latitude is no. 1 control - Differential heating of land and water

- Land and water do not heat up/cool down at the same rate

- Water requires 3-5x as much energy than land to heat up to the same temperature

- Geographic position

- If prevailing winds blow from sea to land (windward coast), temperatures will not change much

- Tend to have a small annual temperature range

- If prevailing winds blow from land to sea (leeward coast), temperatures will fluctuate much more

- Tend to have a larger annual temperature range
- Ocean currents
- Warm Gulf Stream

- "River" of warm water

transports heat to northern latitudes

- Western Europe is much milder than it should be

- Effects of warm ocean currents - Palm Trees in England and Ireland

By chanhmuoi

Chapter 3 (cont)	Chapter 3 (cont)	Chapter 3 (cont)
- Effects of Cold/Warm Ocean	- Inland Winnipeg and Coastal	- Electrical thermometers
Currents	Vancouver	- Thermistor measures the
- Poleward currents bring	- Cities are located at a similar	resistance to electric currer
warmer conditions	latitude	- Provides accurate temper
- Equatorward current bring	- Vancouver has a milder	reading even when temper
cooler conditions	climate	changes quickly (radiosono
- Another Effect of Cold Ocean	- Temperatures in S.	- Instrument shelters
Currents	hemisphere do not fluctuate as	- White box
- Land is pretty dry	much	- Louvered sides (slits in th
- Ex. Atacama Desert is the	- S. Hemisphere is the "water	housing unit)
driest place on Earth due to the	hemisphere"	- Over grass and away from
cold Peru Ocean Current	- Water moderates temperatures	buildings
- Elevation	## Minimum and Maximum	- 1/5m (5 feet) above grour
- Temperatures usually	Temperatures of the Day/Year	## Crop Protection Against
decrease with altitude in the	- Delay in reaching high temper-	Cold
troposphere	ature: Lag of the Maximum	- Frost/Freeze Prevention
- Atmosphere is mostly transp-	- Also applies to the seasons	- Water sprinklers add heat
arent to solar radiation but the	## Urban Heat Island Effect	the latent heat of fusion wh
ground absorbs almost all	- Interior sections of cities tend	the water freezes
radiation that hits it	to be warmer than surrounding	- Air mixing uses wind mac
- Air in contact with ground	rural areas	to mix warm and cool air
(conduction) heats up the most	## Temperature Measurements	- Orchard heaters produce
- Atmosphere is heated from	- Mechanical thermometer	most successful results, bu
bottom up	- Liquid in glass expands when	cost and pollution can be s
- Cloud cover	heated, contracts when cooled	icant
- Clouds (or water vapor) lower	- Maximum thermometer -	## Heat Stress and Wind C
surface temperatures during the	mercury	Indices of Human Discomfo
day	- Minimum thermometer -	- Heat Stress Index: Tempe
- Clouds (or water vapor)	alcohol	ature the body perceives w
increase surface temperatures	- Thermograph	you include effects of humi
at night	- Two metals in the strip will	- Evaporation of sweat is
- Albedo variations	expand/contract differently	reduced when humidity is h
- High albedo reduces surface	depending on the temperature	
temperature		
- Low albedo increases surface		
temperature		

Not published yet. Last updated 4th January, 2024. Page 7 of 11.

Consequences of Being Next

to Large Body of Water

Sponsored by Readable.com Measure your website readability!

- ent
- erature
- rature
- ndes)
- he
- m

Ind st the

at from hen

chines

e the ut fuel signif-

Chill: fort

oerwhen nidity

high

Meteorology Chapter 1-4 Cheat Sheet by chanhmuoi via cheatography.com/198300/cs/41938/

Chapter 3 (cont)

Apparent Temperature:
temperature a person perceives
Wind Chill Index: Temperature
the body perceives when you
include effects of wind

- Cold, dry air will evaporate moisture from the body

 Wind will blow away isolating air layer that surrounds the body
 ## Temperature and the Economy

Heating Degree Days
Gives a sense of how often one needs to heat a building
Assumption: Heating not required when daily mean temperature is ≥65°F, then there is zero heating degree days
For each degree the mean temperature < 65°F, this is

counted as one Heating Degree Day

- Cooling Degree Days

- Cooling not required when daily mean temperature is 65°F or lower

 Each degree of temperature > 65°F is counted as one Cooling Degree Day

- Heating/Cooling Degree Days and Electric Bills

- Heating bill correlates with heating degree days

- Growing Degree Days

Chapter 3 (cont) Chapter 4 (cont) - A way to determine if a crop - When it's warmer, \$H_2O\$ can be successfully grown in molecules break bonds temporany given area arily - Assumes a BASE temperature - Flow over each other but for any given crop remain connected, liquid water - If daily mean is below the - Higher kinetic energy state base, the plant goes dormant ### Water Vapor - The difference between this - When it's very warm, \$H_20\$ BASE temperature and the daily molecules break bonds mean temperature is a Growing completely - Molecules scatter in random Degree Day - Some crops go dormant if daily directions, gaseous water = mean is too high water vapor - If daily mean > 86°F, many - Highest kinetic energy state plants stress out, go dormant ### Ice-Water-Water Vapor - In this event, the number of - When water absorbs or GDD is set at zero releases internal energy, it can change phase Chapter 4 ## Heat Energy One calorie of heat energy is ## Water: A Unique Substance required to raise 1 gram of water ### Hydrogen Bonding 1°C - The attractive force between ## Water: Changing Phases \$H 2O\$ molecules - Latent Heat of Melting: 80 - Hydrogen side of \$H_2O\$ is calories "+" charged | Oxygen side is "-" - 80 calories of heat absorbed charged by 1g of ice melts into 1g of - + Hydrogen side attracted to water oxygen side of other \$H_2O\$ - No temperature change in the molecules ice, but surrounding air gets ### Formation of Ice colder - When it's cold, \$H_2O\$ - Latent Heat of Fusion: 80 molecules cannot break their calories

80 calories of heat released by
 1g of liquid water freezes to 1g
 of ice

Chapter 4 (cont)

- No temperature change in the water but surrounding air does heat up

- Latent Heat of Vaporization:

between 540 and 600 calories - 540 to 600 calories absorbed

by 1g of liquid water evaporate to 1g water vapor

- Heat is taken from surrounding air resulting in decrease air temperature

- Latent Heat of Condensation: between 540 and 600 calories

- 540 to 600 calories released by
 1g water vapor condenses to 1g
 liquid water

- Heat is added to the surrounding air resulting in a temperature increase

- Latent Heat of Sublimation: about 680 calories

- 680 calories of heat absorbed by 1g of ice to sublime to 1g of water vapor

- Heat removed from surrounding air greatly cools the air around the ice

- Latent Heat of Deposition:

about 680 calories

- 680 calories of heat released
 by 1g of water vapor deposits to
 1g of ice

- Heat added to the environment greatly warms the air around the ice

С

By chanhmuoi

bonds

structure, ice

Liquid Water

- Remain fixed in a crystalline

- Lowest kinetic energy state

Not published yet. Last updated 4th January, 2024. Page 8 of 11. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/chanhmuoi/

Meteorology Chapter 1-4 Cheat Sheet by chanhmuoi via cheatography.com/198300/cs/41938/

Chapter 4 (cont)	Chapter 4 (cont)	Chapter 4 (cont)	Chapter 4 (cont)
## Measuring Water Vapor	- When air is saturated, conden-	- Amount of water vapor allowed	- There usually needs to be
- Mixing Ratio	sation occurs	in air is mostly determined by	condensation nuclei for it to form
- Mass of water vapor/mass of	- The lower the RH, the faster	temperature	- Dust, smoke, ash, salt, sulfate
dry air it is in	water evaporates	- Warmer temperatures allow for	particles, and even bacteria
- Water vapor measured in	- Watering lawn in the morning	more water vapor	- Without these, clouds would
grams	is more effective than watering	## When Air is Saturated	not form and RH would need to
- Dry air measured in kg	in the afternoon	Some kind of Condensation	be greater than 100% to form
- Actual mass of water vapor in	- RH can be over 100% but not	(Deposition) Occurs	- Deposition can occur in bitterly
the air	for long (supersaturation)	- Dew forms	cold air without nuclei
- Saturation Mixing Ratio	- Violent updrafts in thunde-	- Frost forms (if below freezing)	- Condensation or deposition will
- Max amount of water vapor	rstorms can supersaturate	- Fog forms	always occur when RH reaches
allowed in the air (mostly	- Dew Point Temperature (Td)	- Cloud forms	100% (in this class)
determined by temperature)	- Temperature at which	## Formation of Dew	### Fog
- Vapor Pressure	saturation occurs	Ideal Conditions	- Cloud with base at the ground
- Pressure exerted by water	- Better way of measuring actual	- Clear skies, light winds	- Forms when air temperature =
vapor	water vapor content	- Allows for maximum radiat-	dew temperature
- Total air pressure = sum of	- Absolute Humidity	ional cooling of the ground	- 4 types
pressure from each gas	- Specific Humidity	- Air in contact with ground cools	1. Radiation
- The more water vapor in the	### Relationship Between T, Td,	to the dew point	1. Ground cools rapidly and
air, the greater its contribution to	and RH	- If air continues to cool below	causes saturation near the
the total air pressure	- When T and Td are close, RH	freezing, frozen dew occurs	ground
- Relative Humidity	is high	## Formation of Frost	2. Nocturnal inversion can
- Mass of water vapor/mass of	- When T and Td are far apart,	When Deposition occurs instead	prevent higher fog
water vapor allowed to be in the	RH is low	of condensation	3. Clear skies, light winds, high
air	### Water Vapor Rule	## Clouds	relative humidity
- RH=mixing ratio/saturation	- Air can only hold so much	Bringing Air to Saturation	4. Also called Valley frog
mixing ratio	water vapor	- Cooling air is the easiest way	2. Advection
- RH=vapor pressure/saturation	- When it has as much water	to saturate the air	1. Warm, moist air blowing
vapor pressure	vapor as physics allow, we say	- Air always cools as it rises	horizontally(advecting) over a
- Relative humidity can be	the air is saturated	### Formation of Clouds	"cold" surface
misleading	## Saturation Vapor Pressure	- Clouds result from conden-	3. Upslope
- Does not tell you how much	- Pressure exerted by water	sation and/or deposition	1. Humid air moves up a hill or
water vapor is in the air unless	vapor when the air is saturated		mountain
way here with a taxage anatuma of the	souther the		

- Does not tell y water vapor is i you know the temperature of the air

- RH does tell you how close you are to saturating the air

By chanhmuoi

with it

Not published yet. Last updated 4th January, 2024. Page 9 of 11.

Sponsored by Readable.com Measure your website readability!

Meteorology Chapter 1-4 Cheat Sheet by chanhmuoi via cheatography.com/198300/cs/41938/

Chapter 4 (cont)

- 1. The upward flow causes the air to expand, cool, which can eventually reach 100%
- 4. Evaporative
- Process of Evaporation involved
- Rain falls, partially evaporates
- Adds water vapor to air, leads to saturation - Evaporation also chills air,
- assiting in bringing air to saturation
- Precipitation Fog
- Steam Fog
- Cool dry air moves over warm surface, esp. water
- Common over lakes in autumn when lake is still warm from summer and air above it is cold and drv
- ### Classification of Clouds
- Jean-Baptiste Lamarck (1802)
- Luke Howard (1803)
- Abercromby and Hildebrandsson (1887)
- Clouds are classified by appearance, shape, and how high they are.
- **High Clouds**
- Cirrus Clouds
- Composed mostly of ice crystals
- Thin due to limited water vapor
- Cirrocumulus
- Composed of mostly ice
- crystals but with lumps
- Cirrostratus

Chapter 4 (cont)

- Chapter 4 (cont) - Composed of mostly ice - Rising air below clouds, crystals and when thin, often sinking air between clouds causes a halo around sun/moon - Cumulus Humilis - Can be thicker but usually, sun - Fair weather clouds still partially shines through - Humble clouds that do not Middle Clouds threaten to build into storms - Altocumulus - Cumulus Congestus - Mostly water droplets - May develop into thunde-- Darker regions noted rstorms - Can signal the possibility of - Cumulonimbus afternoon storms - Most intense rainmaker - Altostratus - Overshooting top - Mostly water droplets with a - When the cloud punches "frosted glass" sun appearance through the stratosphere - Usually does not permit Special Latin Descriptive Terms shadows to be cast - Cloud Varieties Low Clouds - Uncinus - Stratus - Hooked shaped, often appear - Layer of low clouds covering before stormy weather moves in the skv - Cirrus uncinus - Often seen after fog "lifts" - Fractus - Can have mist or drizzle - Stratus or cumulus clouds that - Nimbostratus appear broken - Light to moderate rain or snow - Cumulus fractus better known - Stratocumulus as scud clouds - Lumpy clouds that appear in - Mammatus rows with some separation - Udder-shaped protuberances - Lower than altocumulus with often associated with the underside of a cumulonimbus larger cloud elements Clouds of Vertical Development anvil cloud - Cumulus - Only cloud that forms in - Cauliflower or cotton ball sinking air clouds **Unusual Clouds** - Lentiular - Lens-shaped and common over mountains and downwind of high terrain
 - Pileus - Cap clouds

- Chapter 4 (cont)
- Form when moist air is pushed up under a develeoping cumulus cloud
- Banner Cloud
- Forms downwind of an isolated mountain peak
- Asperitas Clouds
- Often forming near precipita-
- tion-bearing clouds
- Undulating up and down like ocean waves
- *Super-high Clouds*
- Nacreous
- Stratophere
- Noctilucent
- Mesosphere
- Reminder: Rising air cools, temperature drops to dew point, condenses
- Excess water vapor condenses into tiny droplets
- Excess water vapor used up very quickly
- This results in Billions of teeny tiny water droplets whose radii are 20 microns or less ## Observing Clouds from
- Spage
- Polar orbiting satellite
- Geostationary satellite
- Infrared imagery provides extra detail
- Darker shades of grey indicate warm clouds, thus low altitude
- Brighter grays and whites
- indicate cold clouds thus high altitude
- ## Water Vapor Imagery

Not published yet. Last updated 4th January, 2024. Page 10 of 11.

Sponsored by Readable.com Measure your website readability!

By chanhmuoi

Chapter 4 (cont)

- Shows air motions (wind) even

in cloud-free areas

- Detects water vapor at the

6.9µm wavelength

- Colorized to differentiate

between dry and moist air

Two Main Types of Nuclei - Condensation Nuclei

- Hygroscopic (water-seeking) nuclei

- Most effective condensation nuclei

- Salt crystals are the best

- Only RH ~75% required

- Hydrophobic (water-repelling) nuclei

- Least effective condensatioin nuclei

- Waxes and oil droplets

discourage but do not totally prevent condensation

- RH must be 100% or even temporarily higher

By chanhmuoi

cheatography.com/chanhmuoi/

Not published yet. Last updated 4th January, 2024. Page 11 of 11. Sponsored by Readable.com Measure your website readability! https://readable.com