Cheatography

AP Bio - Cell Communication and Cell Cycle Cheat Sheet by chandaii via cheatography.com/135022/cs/27926/

What is Cell Communication?

-- Cell communication is how cells sense and react to their environment and/or signals from other cells

-- It can be through direct cell-to-cell contact

-- It consists of **ligands and receptors**; ligands are molecules that bind to receptors (signals); receptors are proteins that detect external signals (antenna)

-- The signal **always** come from the exterior of the cell (extracellular)

Steps of Cell Signaling:

1. **Reception** -- ligand binds to receptor causing receptor to change shape

2. **Transduction** -- information transfer from receptor throughout cell

3. Response -- how the cell changes

Signal Transduction

Understanding Pathway Diagrams

-- Pointed arrows means activates

- -- Blunt arrow means inhibit
- -- For multi-step pathways you should simplify into the overall result
- -- Similar to math, if there is two inhibitions it would result in an activation

Summary of Cell Signaling

-- Different cell types can have different response to the same ligand because they have different receptors

By chandaii cheatography.com/chandaii/

RECEPTION

Types of receptors:	
C	Cell surface receptors
Ligand gated ion channe- ls:	Receptors are ion channels that open and let ions cross the membrane
G protei- n-c- oupled receptors (GPCR):	Receptors are associated with G protein. When the receptor is activated it causes the G protein to activate. The G protein activates enzymes. ligand> GPCR> G protein > enzyme> second messengers
Receptor tyrosine kinases (RTK):	Kinases are enzymes that add phosphate groups to other molecules. When a ligand binds it turns on kinase activity of RTKs.

-- Intracellular receptors

-- This is when the receptor is in side the cell. Unlike cell surface receptors, the ligands are nonpolar. These regulate gene expression.

Types of Ligan

-- Ligands can be: gases ions, lipids, proteins, amino acids, nucleotides, etc

Structure Determines Function

- -- Ligand binding to a receptor changes the receptors shape
- -- Change in receptor shape = change in receptor function

TRANSDUCTION

Am	plification		
When one ligand binding to one receptor it results in many molecules inside the cell	Each molecule in the signaling pathway can be recycled		
Second	Messengers		
These activate many enzymes within the cell	For example: Cyclic AMP. The activation of some GPCRs increase cAMP while others decrease cAMP.		
Activation of GPCRS regulate the production of second messengers	cAMP can activate other proteins like protein kinase A which is an important regulator of metabolic pathways		
the "first messen			
binding to the rec	eptor		
Phosphor	ylation cascades		
Phosphorylation	changes the shape of		

-- Phosphorylation changes the shape of protein, in result changes the function

RESPONSE

Common cellular response

Gene expres-	activation of transcription of specific genes
sion:	
Enzyme activa- tion:	turning on kinases
Apop- tosis:	programmed cell death in which the cell breaks down while protecting neighboring cells. It is important for development and a normal process in healthy organisms

Published 13th May, 2021. Last updated 13th May, 2021. Page 1 of 2. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

AP Bio - Cell Communication and Cell Cycle Cheat Sheet by chandaii via cheatography.com/135022/cs/27926/

-- There are four phases to the cell cycle

G1 (gap 1) = cell growth

```
S (synthesis) = DNA replication
```

G2 (gap 2) = cell growth, prepare for mitosis

M (mitosis) = cell division

-- Cyclins are proteins that regulate cyclindependent kinases (CDKs)

-- Cyclins/CDKs control which phase of the cell cycle a cell is in

-- If the cell is not regulated, it can result in cancer which is abnormal growth due to the continuous progression through the cell cycle

Checkpoints determine if the cell is ready to progress to the next phase of the cell cycle

-- G1 checkp

oint:

It checks whether the cell is big enough and has made the proper proteins for the synthesis phase. If not, the cell goes through a resting period (G0) until it is ready to divide.

By chandaii

cheatography.com/chandaii/

Call Cy	colo Ch	ooknoin	to loopt
	/cie un	eckdoin	ts (cont

It checks whether DNA has been
replicated correctly. If so, the cell
continues on to mitosis.
It checks whether mitosis is
complete. If so, the cell divides,
and the cycle repeats.

 Inte- rph- ase	DNA is replicated, cell prepare for mitosis. The nuclear envelop are distant and the chromosomes are in the form of threadlike chromatin.
	Chromatin condenses making the
Prop-	chromosomes visible and nuclear
hase	envelop breaks down
 Meta- phase	The thick, coiled chromosomes, each with two chromatids, become aligned at the equatoria- l/metaphase plane
	Sister chromatids separate and
Anap-	the daughter chromosomes move
hase	toward the poles

MITOSIS (cont)

The chromosomes are at the
poles, and are becoming more
diffuse. The nuclear envelop is
reforming. They cytoplasm may
be dividing. Then the division into
two daughter cells.

	Mitosis	Meiosis	
Divisions	One	Two	
Independent Assortment	No	Yes (metaphase I)	
Synapsis	No	Yes - form bivalents	
Crossing Over	No	Yes (prophase I)	
Outcome	Two cells	Four cells	
Ploidy	Diploid	Haploid	
Use	Body cells	Sex cells (gametes)	
Genetics	Identical cells	Variation	

Published 13th May, 2021. Last updated 13th May, 2021. Page 2 of 2.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com